Suppr超能文献

工程化杂合羊毛硫抗生素可产生高度稳定的杀菌肽cerocin V。

Engineering hybrid lantibiotics yields the highly stable and bacteriocidal peptide cerocin V.

作者信息

Guo Longcheng, Stoffels Konstantin, Broos Jaap, Kuipers Oscar P

机构信息

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.

出版信息

Microbiol Res. 2024 May;282:127640. doi: 10.1016/j.micres.2024.127640. Epub 2024 Feb 9.

Abstract

Antimicrobial peptides (AMPs) show promise as alternatives to traditional antibiotics for treating drug-resistant infections. Their adaptability and diverse sequence possibilities allow for rational design by modulating physicochemical determinants to achieve desired biological properties, transforming them into peptides for potential new therapies. Nisin, one of the best-studied AMPs, is believed to have potential to be used as a therapeutic, particularly against antibiotic-resistant bacteria. However, its instability in physiological conditions limits its use in clinical applications and pharmaceutical development. Exploration of new natural variants of nisin has uncovered diverse properties using different domains. Shuffling peptide modules can fine-tune the chemical properties of these molecules, potentially enhancing stability while maintaining or improving antimicrobial activity. In this study, hybrid AMPs were created by combining domains from three unique nisin variants, i.e. nisin A, cesin and rombocin, leading to the identification of a promising variant, named cerocin A, which harbours only 25 amino acids compared to the typical 31-35 amino acid length of nisin. Cerocin A demonstrates potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), approaching that of nisin itself. Cerocin A's mode of action involves a dual mechanism through the combination of two domains, consisting of a small ring/domain (6 amino acids) from the C-terminal end of rombocin attached to the preceding peptide of cesin, changing it from a bacteriostatic to a bactericidal peptide. Further mutation studies identified a new variant, cerocin V, with significantly improved resistance against trypsin degradation, while maintaining high potency. Importantly, cerocin V showed no undesired toxic effects on human red blood cells and remained stable in human plasma. In conclusion, we demonstrate that peptide construction using domain engineering is an effective strategy for manipulating both biological and physicochemical aspects, leading to the creation of novel bioactive molecules with desired properties. These constructs are appealing candidates for further optimization and development as novel antibiotics.

摘要

抗菌肽(AMPs)有望成为治疗耐药性感染的传统抗生素替代品。它们的适应性和多样的序列可能性使得通过调节物理化学决定因素进行合理设计成为可能,从而实现所需的生物学特性,将它们转化为潜在新疗法的肽。乳酸链球菌素是研究最深入的AMPs之一,被认为有潜力用作治疗剂,特别是对抗抗生素耐药细菌。然而,它在生理条件下的不稳定性限制了其在临床应用和药物开发中的使用。对乳酸链球菌素新天然变体的探索揭示了使用不同结构域的多样特性。改组肽模块可以微调这些分子的化学性质,可能在保持或提高抗菌活性的同时增强稳定性。在本研究中,通过结合三种独特的乳酸链球菌素变体(即乳酸链球菌素A、cesin和rombocin)的结构域创建了杂合AMPs,从而鉴定出一种有前景的变体,命名为cerocin A,与典型的31-35个氨基酸长度的乳酸链球菌素相比,它仅含有25个氨基酸。Cerocin A对耐甲氧西林金黄色葡萄球菌(MRSA)表现出强大的抗菌活性,接近乳酸链球菌素本身。Cerocin A的作用模式涉及一种双重机制,通过两个结构域的组合,由rombocin C末端的一个小环/结构域(6个氨基酸)连接到cesin的前一个肽段,将其从抑菌肽转变为杀菌肽。进一步的突变研究鉴定出一种新变体cerocin V,对胰蛋白酶降解的抗性显著提高,同时保持高效力。重要的是,cerocin V对人红细胞没有不良毒性作用,并且在人血浆中保持稳定。总之,我们证明使用结构域工程进行肽构建是一种操纵生物学和物理化学方面的有效策略,导致创建具有所需特性的新型生物活性分子。这些构建体是作为新型抗生素进行进一步优化和开发的有吸引力的候选物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验