Suppr超能文献

使用布尔网络模型优化乳腺癌的治疗靶点

Optimizing therapeutic targets for breast cancer using boolean network models.

作者信息

Sgariglia Domenico, Carneiro Flavia Raquel Gonçalves, Vidal de Carvalho Luis Alfredo, Pedreira Carlos Eduardo, Carels Nicolas, da Silva Fabricio Alves Barbosa

机构信息

Engenharia de Sistemas e Computação, COPPE-UFRJ, Rio de Janeiro, Brazil.

Center of Technological Development in Health (CDTS), FIOCRUZ, Rio de Janeiro, Brazil; Laboratório Interdisciplinar de Pesquisas Médicas Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil; Program of Immunology and Tumor Biology, Brazilian National Cancer Institute(INCA), Rio de Janeiro 20231050, Brazil.

出版信息

Comput Biol Chem. 2024 Apr;109:108022. doi: 10.1016/j.compbiolchem.2024.108022. Epub 2024 Feb 7.

Abstract

Studying gene regulatory networks associated with cancer provides valuable insights for therapeutic purposes, given that cancer is fundamentally a genetic disease. However, as the number of genes in the system increases, the complexity arising from the interconnections between network components grows exponentially. In this study, using Boolean logic to adjust the existing relationships between network components has facilitated simplifying the modeling process, enabling the generation of attractors that represent cell phenotypes based on breast cancer RNA-seq data. A key therapeutic objective is to guide cells, through targeted interventions, to transition from the current cancer attractor to a physiologically distinct attractor unrelated to cancer. To achieve this, we developed a computational method that identifies network nodes whose inhibition can facilitate the desired transition from one tumor attractor to another associated with apoptosis, leveraging transcriptomic data from cell lines. To validate the model, we utilized previously published in vitro experiments where the downregulation of specific proteins resulted in cell growth arrest and death of a breast cancer cell line. The method proposed in this manuscript combines diverse data sources, conducts structural network analysis, and incorporates relevant biological knowledge on apoptosis in cancer cells. This comprehensive approach aims to identify potential targets of significance for personalized medicine.

摘要

鉴于癌症从根本上说是一种基因疾病,研究与癌症相关的基因调控网络为治疗目的提供了有价值的见解。然而,随着系统中基因数量的增加,网络组件之间相互连接所产生的复杂性呈指数级增长。在本研究中,使用布尔逻辑来调整网络组件之间的现有关系有助于简化建模过程,从而能够基于乳腺癌RNA测序数据生成代表细胞表型的吸引子。一个关键的治疗目标是通过靶向干预引导细胞从当前的癌症吸引子转变为与癌症无关的生理上不同的吸引子。为了实现这一目标,我们开发了一种计算方法,该方法利用细胞系的转录组数据,识别出其抑制作用能够促进从一个肿瘤吸引子到另一个与凋亡相关的吸引子的所需转变的网络节点。为了验证该模型,我们利用了先前发表的体外实验,其中特定蛋白质的下调导致乳腺癌细胞系的细胞生长停滞和死亡。本手稿中提出的方法结合了多种数据源,进行了结构网络分析,并纳入了关于癌细胞凋亡的相关生物学知识。这种综合方法旨在识别对个性化医疗具有重要意义的潜在靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验