Suppr超能文献

用于从环境水和鱼类中高效富集和分离酚类内分泌干扰物的磁性偶氮连接多孔聚合物的构建

Construction of magnetic azo-linked porous polymer for highly-efficient enrichment and separation of phenolic endocrine disruptors from environmental water and fish.

作者信息

Zhao Guijiao, Wang Chenhuan, Kang Min, Hao Lin, Liu Weihua, Wang Zhi, Shi Xiaodong, Wu Qiuhua

机构信息

College of Science, Hebei Agricultural University, Baoding 071001, China.

Department of Chemistry, University of South Florida, Tampa, FL 33620, United States.

出版信息

Food Chem. 2024 Jul 1;445:138698. doi: 10.1016/j.foodchem.2024.138698. Epub 2024 Feb 10.

Abstract

Developing effective methods for highly sensitive detection of phenolic endocrine disruptors (EDCs) is especially urgent. Herein, a magnetic hydroxyl-functional porous organic polymer (M-FH-POP) was facilely synthesized by green diazo-couple reaction using basic fuchsin and hesperetin as monomer for the first time. M-FH-POP delivered superior adsorption performance for phenolic EDCs. The adsorption mechanism was hydrogen bonds, hydrophobic interaction and π-π interplay. With M-FH-POP as adsorbent, a magnetic solid phase extraction method was established for extracting trace phenolic EDCs (bisphenol A, 4-tert-butylphenol, bisphenol F and bisphenol B) in water and fish before ultra-high performance liquid chromatography tandem mass spectrometry analysis. The method displayed low detection limit (S/N = 3) of 0.05-0.15 ng mL for water and 0.08-0.3 ng g for fish. The spiked recoveries were 88.3 %-109.8 % with the relative standard deviations of 2.4 %-6.4 %. The method offers a new strategy for sensitive determination of phenolic EDCs in water and fish samples.

摘要

开发用于高灵敏度检测酚类内分泌干扰物(EDCs)的有效方法尤为迫切。在此,首次以碱性品红和橙皮苷为单体,通过绿色重氮偶联反应简便地合成了磁性羟基官能化多孔有机聚合物(M-FH-POP)。M-FH-POP对酚类EDCs具有优异的吸附性能。吸附机制为氢键、疏水相互作用和π-π相互作用。以M-FH-POP为吸附剂,建立了一种磁性固相萃取方法,用于在超高效液相色谱串联质谱分析之前萃取水中和鱼类中的痕量酚类EDCs(双酚A、4-叔丁基苯酚、双酚F和双酚B)。该方法对水的检测限(S/N = 3)低至0.05 - 0.15 ng/mL,对鱼类为0.08 - 0.3 ng/g。加标回收率为88.3% - 109.8%,相对标准偏差为2.4% - 6.4%。该方法为灵敏测定水和鱼类样品中的酚类EDCs提供了一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验