Kanazawa Yuki, Ikemitsu Natsuki, Kinjo Yuki, Harada Masafumi, Hayashi Hiroaki, Taniguchi Yo, Ito Kosuke, Bito Yoshitaka, Matsumoto Yuki, Haga Akihiro
Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan.
Division of Radiological Technology, Okayama University Hospital, Okayama 700-8558, Japan.
BJR Open. 2023 Dec 12;6(1):tzad003. doi: 10.1093/bjro/tzad003. eCollection 2024 Jan.
In a clinical study, diffusion kurtosis imaging (DKI) has been used to visualize and distinguish white matter (WM) structures' details. The purpose of our study is to evaluate and compare the diffusion tensor imaging (DTI) and DKI parameter values to obtain WM structure differences of healthy subjects.
Thirteen healthy volunteers (mean age, 25.2 years) were examined in this study. On a 3-T MRI system, diffusion dataset for DKI was acquired using an echo-planner imaging sequence, and T-weghted (Tw) images were acquired. Imaging analysis was performed using Functional MRI of the brain Software Library (FSL). First, registration analysis was performed using the Tw of each subject to MNI152. Second, DTI (eg, fractional anisotropy [FA] and each diffusivity) and DKI (eg, mean kurtosis [MK], radial kurtosis [RK], and axial kurtosis [AK]) datasets were applied to above computed spline coefficients and affine matrices. Each DTI and DKI parameter value for WM areas was compared. Finally, tract-based spatial statistics (TBSS) analysis was performed using each parameter.
The relationship between FA and kurtosis parameters (MK, RK, and AK) for WM areas had a strong positive correlation (FA-MK, = 0.93; FA-RK, = 0.89) and a strong negative correlation (FA-AK, = 0.92). When comparing a TBSS connection, we found that this could be observed more clearly in MK than in RK and FA.
WM analysis with DKI enable us to obtain more detailed information for connectivity between nerve structures.
Quantitative indices of neurological diseases were determined using segmenting WM regions using voxel-based morphometry processing of DKI images.
在一项临床研究中,扩散峰度成像(DKI)已被用于可视化和区分白质(WM)结构的细节。我们研究的目的是评估和比较扩散张量成像(DTI)和DKI参数值,以获得健康受试者的WM结构差异。
本研究纳入了13名健康志愿者(平均年龄25.2岁)。在3-T MRI系统上,使用回波平面成像序列采集DKI的扩散数据集,并采集T加权(Tw)图像。使用脑功能磁共振成像软件库(FSL)进行成像分析。首先,使用每个受试者的Tw图像与MNI152进行配准分析。其次,将DTI(如分数各向异性[FA]和各扩散率)和DKI(如平均峰度[MK]、径向峰度[RK]和轴向峰度[AK])数据集应用于上述计算得到的样条系数和仿射矩阵。比较WM区域的每个DTI和DKI参数值。最后,使用每个参数进行基于纤维束的空间统计(TBSS)分析。
WM区域的FA与峰度参数(MK、RK和AK)之间存在强正相关(FA-MK, = 0.93;FA-RK, = 0.89)和强负相关(FA-AK, = 0.92)。在比较TBSS连接时,我们发现MK比RK和FA能更清晰地观察到这种情况。
使用DKI进行WM分析使我们能够获得关于神经结构之间连接性的更详细信息。
通过对DKI图像进行基于体素的形态学处理来分割WM区域,从而确定神经疾病的定量指标。