Yang Huiru, Tian Liang, Grirrane Abdessamad, García-Baldoví Alberto, Hu Jiajun, Sastre German, Hu Changwei, García Hermenegildo
Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas, Universitat Politecnica de Valencia, 46022 Valencia, Spain.
ACS Catal. 2023 Nov 8;13(22):15143-15154. doi: 10.1021/acscatal.3c03793. eCollection 2023 Nov 17.
Photodecarboxylation of biomass-derived fatty acids to alkanes offers significant potential to obtain hydrocarbons and economic benefits due to the mild conditions and high activity. Herein, the photodecarboxylation of hexanoic acid into alkanes using TiO-supported monometallic Au or Pd and bimetallic Au-Pd catalysts is reported. It was found that bimetallic Au-Pd catalysts, featuring a core-shell structure evidenced by EDX-mapping and element line profile, show better photocatalytic performance, achieving 94.7% conversion of hexanoic acid and nearly 100% selectivity to pentane under UV-vis irradiation in the absence of H than the monometallic Au analogue. This remarkable enhancement in activity compared to its TiO supported monometallic Au or Pd analogues can be attributed to the synergistic effect between Au and Pd within the nanostructured Au(core)-Pd(shell) alloy for achieving more efficient charge-separation efficiency upon visible light excitation. This photocatalyst exhibits a wide scope converting multiple fatty acids into hydrocarbons. Moreover, it can even photocatalyze the conversion of raw bio-oils into alkanes directly. No obvious activity loss was observed during the reusability tests, demonstrating the good stability of the present catalyst. Density functional theory (DFT) calculations indicate that oxidation of carboxylates on TiO leads to alkyl radicals that become bound to metal nanoparticles. The superior catalytic performance of Au(core)-Pd(shell)/TiO is derived from the weaker adsorption for H on the alloy and the lower hydrogen evolution reaction overpotential. Our research can result in an efficient bio-oil upgrading, resulting in the synthesis of biofuels from biomass under mild conditions.
生物质衍生脂肪酸光催化脱羧制烷烃由于条件温和、活性高,在获取碳氢化合物和经济效益方面具有巨大潜力。本文报道了使用负载在TiO上的单金属Au或Pd以及双金属Au-Pd催化剂将己酸光催化脱羧为烷烃的过程。研究发现,具有核壳结构(通过能谱分析和元素线轮廓证实)的双金属Au-Pd催化剂表现出更好的光催化性能,在无氢气存在的紫外-可见光照射下,己酸转化率达到94.7%,对戊烷的选择性接近100%,优于单金属Au催化剂。与负载在TiO上的单金属Au或Pd催化剂相比,这种显著的活性增强可归因于纳米结构的Au(核)-Pd(壳)合金中Au和Pd之间的协同效应,从而在可见光激发时实现更高效的电荷分离效率。这种光催化剂在将多种脂肪酸转化为碳氢化合物方面具有广泛的适用性。此外,它甚至可以直接将粗生物油光催化转化为烷烃。在可重复使用性测试中未观察到明显的活性损失,表明该催化剂具有良好的稳定性。密度泛函理论(DFT)计算表明,TiO上羧酸盐的氧化会产生与金属纳米颗粒结合的烷基自由基。Au(核)-Pd(壳)/TiO的优异催化性能源于合金对氢气的较弱吸附以及较低的析氢反应过电位。我们的研究可以实现高效的生物油升级,从而在温和条件下从生物质合成生物燃料。