Suppr超能文献

开管式捕集柱:单细胞蛋白质组学中简单、稳健的液相色谱分离方法。

Open-tubular trap columns: towards simple and robust liquid chromatography separations for single-cell proteomics.

机构信息

Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.

Northeastern University, Barnett Institute of Biological and Chemical Analysis, Department of Chemistry and Chemical Biology, College of Science, Boston, MA 02115, USA.

出版信息

Mol Omics. 2024 Mar 25;20(3):184-191. doi: 10.1039/d3mo00249g.

Abstract

Nanoflow liquid chromatography-mass spectrometry is key to enabling in-depth proteome profiling of trace samples, including single cells, but these separations can lack robustness due to the use of narrow-bore columns that are susceptible to clogging. In the case of single-cell proteomics, offline cleanup steps are generally omitted to avoid losses to additional surfaces, and online solid-phase extraction/trap columns frequently provide the only opportunity to remove salts and insoluble debris before the sample is introduced to the analytical column. Trap columns are traditionally short, packed columns used to load and concentrate analytes at flow rates greater than those employed in analytical columns, and since these first encounter the uncleaned sample mixture, trap columns are also susceptible to clogging. We hypothesized that clogging could be avoided by using large-bore porous layer open tubular trap columns (PLOTrap). The low back pressure ensured that the PLOTraps could also serve as the sample loop, thus allowing sample cleanup and injection with a single 6-port valve. We found that PLOTraps could effectively remove debris to avoid column clogging. We also evaluated multiple stationary phases and PLOTrap diameters to optimize performance in terms of peak widths and sample loading capacities. Optimized PLOTraps were compared to conventional packed trap columns operated in forward and backflush modes, and were found to have similar chromatographic performance of backflushed traps while providing improved debris removal for robust analysis of trace samples.

摘要

纳升液相色谱-质谱联用技术是深入分析痕量样品(包括单细胞)蛋白质组的关键,但由于使用易堵塞的细内径色谱柱,这些分离可能缺乏稳定性。在单细胞蛋白质组学中,通常省略离线清洗步骤以避免额外表面的损失,而在线固相萃取/捕获柱通常是在将样品引入分析柱之前去除盐和不溶性颗粒的唯一机会。捕获柱传统上是短的填充柱,用于在大于分析柱流速的流速下加载和浓缩分析物,由于这些柱首先遇到未经清洗的样品混合物,因此也容易堵塞。我们假设可以通过使用大内径多孔层开管捕获柱(PLOTrap)来避免堵塞。低背压确保 PLOTrap 也可以用作样品环,从而允许使用单个 6 通阀进行样品清洗和进样。我们发现 PLOTrap 可以有效地去除颗粒以避免柱堵塞。我们还评估了多种固定相和 PLOTrap 直径,以优化峰宽和样品负载容量方面的性能。优化后的 PLOTrap 与正向和反冲洗模式下操作的常规填充捕获柱进行了比较,发现反冲洗捕获柱具有相似的色谱性能,同时为稳健分析痕量样品提供了更好的颗粒去除效果。

相似文献

2
Self-packed core shell nano liquid chromatography columns and silica-based monolithic trap columns for targeted proteomics.
J Chromatogr A. 2017 May 19;1498:111-119. doi: 10.1016/j.chroma.2017.03.043. Epub 2017 Mar 21.
4
Performance of nanoflow liquid chromatography using core-shell particles: A comparison study.
J Chromatogr A. 2021 Jul 5;1648:462218. doi: 10.1016/j.chroma.2021.462218. Epub 2021 May 1.
6
[Research advances in nano liquid chromatography instrumentation].
Se Pu. 2021 Oct;39(10):1065-1076. doi: 10.3724/SP.J.1123.2021.06017.
7
A "plug-and-use" approach towards facile fabrication of capillary columns for high performance nanoflow liquid chromatography.
J Chromatogr A. 2014 Jan 17;1325:109-14. doi: 10.1016/j.chroma.2013.12.002. Epub 2013 Dec 11.
10
[Recent advances in microchip liquid chromatography].
Se Pu. 2021 Apr 8;39(4):357-367. doi: 10.3724/SP.J.1123.2020.07031.

引用本文的文献

1
Single-Cell Proteomics Using Mass Spectrometry.
ArXiv. 2025 Mar 29:arXiv:2502.11982v2.
2
Review and Practical Guide for Getting Started With Single-Cell Proteomics.
Proteomics. 2025 Jan;25(1-2):e202400021. doi: 10.1002/pmic.202400021. Epub 2024 Nov 16.
3
Development of an efficient, effective, and economical technology for proteome analysis.
Cell Rep Methods. 2024 Jun 17;4(6):100796. doi: 10.1016/j.crmeth.2024.100796. Epub 2024 Jun 11.

本文引用的文献

1
The rise of single-cell proteomics.
Anal Sci Adv. 2021 Feb 1;2(3-4):84-94. doi: 10.1002/ansa.202000152. eCollection 2021 Apr.
2
An Automated Nanowell-Array Workflow for Quantitative Multiplexed Single-Cell Proteomics Sample Preparation at High Sensitivity.
Mol Cell Proteomics. 2023 Dec;22(12):100665. doi: 10.1016/j.mcpro.2023.100665. Epub 2023 Oct 14.
3
Easy and Accessible Workflow for Label-Free Single-Cell Proteomics.
J Am Soc Mass Spectrom. 2023 Oct 4;34(10):2374-2380. doi: 10.1021/jasms.3c00240. Epub 2023 Aug 18.
4
Rapid, One-Step Sample Processing for Label-Free Single-Cell Proteomics.
J Am Soc Mass Spectrom. 2023 Aug 2;34(8):1701-1707. doi: 10.1021/jasms.3c00159. Epub 2023 Jul 6.
5
Single-cell proteomics: quantifying post-transcriptional regulation during development with mass-spectrometry.
Development. 2023 Jul 1;150(13). doi: 10.1242/dev.201492. Epub 2023 Jun 30.
6
Data-Dependent Acquisition with Precursor Coisolation Improves Proteome Coverage and Measurement Throughput for Label-Free Single-Cell Proteomics.
Angew Chem Int Ed Engl. 2023 Aug 21;62(34):e202303415. doi: 10.1002/anie.202303415. Epub 2023 Jul 13.
8
A review of the current state of single-cell proteomics and future perspective.
Anal Bioanal Chem. 2023 Nov;415(28):6889-6899. doi: 10.1007/s00216-023-04759-8. Epub 2023 Jun 7.
9
Exploring functional protein covariation across single cells using nPOP.
Genome Biol. 2022 Dec 16;23(1):261. doi: 10.1186/s13059-022-02817-5.
10
The ProteomeXchange consortium at 10 years: 2023 update.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1539-D1548. doi: 10.1093/nar/gkac1040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验