Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India.
Sampurna Sodani Diagnostics, Indore, India.
Lasers Med Sci. 2024 Feb 14;39(1):60. doi: 10.1007/s10103-024-03996-2.
Antimicrobial photodynamic therapy (aPDT) can be a viable option for management of intranasal infections. However, there are light delivery, fluence, and photosensitizer-related challenges. We report in vitro effectiveness of an easily fabricated, low-cost, portable, LED device and a formulation comprising methylene blue (MB) and potassium iodide (KI) for photoinactivation of pathogens of the nasal cavity, namely, methicillin-resistant Staphylococcus aureus, antibiotic-resistant Klebsiella pneumoniae, multi-antibiotic-resistant Pseudomonas aeruginosa, Candida spp., and SARS-CoV-2.In a 96-well plate, microbial suspensions incubated with 0.005% MB alone or MB and KI formulation were exposed to different red light (~ 660 ± 25 nm) fluence using the LED device fitted to each well. Survival loss in bacteria and fungi was quantified using colony-forming unit assay, and SARS-CoV-2 photodamage was assessed by RT-PCR.The results suggest that KI addition to MB leads to KI concentration-dependent potentiation (up to ~ 5 log) of photoinactivation in bacteria and fungi. aPDT in the presence of 25 or 50 mM KI shows the following photoinactivation trend; Gm + ve bacteria > Gm - ve bacteria > fungi > virus. aPDT in the presence of 100 mM KI, using 3- or 5-min red light exposure, results in complete eradication of bacteria or fungi, respectively. For SARS-CoV-2, aPDT using MB-KI leads to a ~ 6.5 increase in cycle threshold value.The results demonstrate the photoinactivation effectiveness of the device and MB-KI formulation, which may be helpful in designing of an optimized protocol for future intranasal photoinactivation studies in clinical settings.
抗菌光动力疗法(aPDT)可以作为治疗鼻腔感染的一种可行选择。然而,目前存在着光照传递、剂量和光敏剂相关的挑战。我们报告了一种易于制备、成本低、便携、使用 LED 设备和包含亚甲蓝(MB)和碘化钾(KI)的制剂对鼻腔病原体进行光灭活的体外有效性,这些病原体包括耐甲氧西林金黄色葡萄球菌、抗生素耐药性肺炎克雷伯菌、多抗生素耐药性铜绿假单胞菌、念珠菌属和 SARS-CoV-2。在 96 孔板中,将含有 0.005%MB 的微生物悬浮液或 MB 和 KI 制剂的微生物悬浮液与单独的 MB 孵育,并使用安装在每个孔中的 LED 设备暴露于不同的红光(660±25nm)剂量下。使用平板计数法定量细菌和真菌的存活损失,并通过 RT-PCR 评估 SARS-CoV-2 的光损伤。结果表明,KI 的加入导致 MB 的光灭活作用呈 KI 浓度依赖性增强(高达5 对数),对细菌和真菌均有增效作用。在存在 25 或 50mM KI 的情况下,aPDT 的光灭活趋势如下:Gm+ve 细菌> Gm-ve 细菌> 真菌> 病毒。在存在 100mM KI 的情况下,使用 3 或 5 分钟的红光照射,分别导致细菌或真菌完全根除。对于 SARS-CoV-2,使用 MB-KI 的 aPDT 导致循环阈值增加~6.5。结果表明,该设备和 MB-KI 制剂具有光灭活效果,这可能有助于设计未来临床环境中鼻腔光灭活研究的优化方案。