Suppr超能文献

用于少样本分割的双分支多级语义学习

Dual Branch Multi-Level Semantic Learning for Few-Shot Segmentation.

作者信息

Chen Yadang, Jiang Ren, Zheng Yuhui, Sheng Bin, Yang Zhi-Xin, Wu Enhua

出版信息

IEEE Trans Image Process. 2024;33:1432-1447. doi: 10.1109/TIP.2024.3364056. Epub 2024 Feb 21.

Abstract

Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples in support images. Although progress has been made recently by combining prototype-based metric learning, existing methods still face two main challenges. First, various intra-class objects between the support and query images or semantically similar inter-class objects can seriously harm the segmentation performance due to their poor feature representations. Second, the latent novel classes are treated as the background in most methods, leading to a learning bias, whereby these novel classes are difficult to correctly segment as foreground. To solve these problems, we propose a dual-branch learning method. The class-specific branch encourages representations of objects to be more distinguishable by increasing the inter-class distance while decreasing the intra-class distance. In parallel, the class-agnostic branch focuses on minimizing the foreground class feature distribution and maximizing the features between the foreground and background, thus increasing the generalizability to novel classes in the test stage. Furthermore, to obtain more representative features, pixel-level and prototype-level semantic learning are both involved in the two branches. The method is evaluated on PASCAL- 5 1 -shot, PASCAL- 5 5 -shot, COCO- 20 1 -shot, and COCO- 20 5 -shot, and extensive experiments show that our approach is effective for few-shot semantic segmentation despite its simplicity.

摘要

少样本语义分割旨在仅通过支持图像中的少量标注示例对查询图像中的新类别对象进行分割。尽管最近通过结合基于原型的度量学习取得了进展,但现有方法仍面临两个主要挑战。第一,支持图像和查询图像之间的各种类内对象或语义相似的类间对象由于其特征表示不佳,会严重损害分割性能。第二,在大多数方法中,潜在的新类别被视为背景,导致学习偏差,使得这些新类别难以正确分割为前景。为了解决这些问题,我们提出了一种双分支学习方法。特定类分支通过增加类间距离同时减小类内距离,鼓励对象的表示更具可区分性。并行地,类不可知分支专注于最小化前景类特征分布并最大化前景与背景之间的特征,从而在测试阶段提高对新类别的泛化能力。此外,为了获得更具代表性的特征,两个分支都涉及像素级和原型级语义学习。该方法在PASCAL - 5 1 - shot、PASCAL - 5 5 - shot、COCO - 20 1 - shot和COCO - 20 5 - shot上进行了评估,大量实验表明我们的方法尽管简单,但对于少样本语义分割是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验