Suppr超能文献

青少年早期电子烟使用的生态研究:一种理解健康流行趋势的机器学习方法。

An ecological examination of early adolescent e-cigarette use: A machine learning approach to understanding a health epidemic.

机构信息

Department of Psychology, University of Tennessee, Knoxville, Knoxville, Tennessee, United States of America.

Department of Psychology, Arizona State University, Tempe, Arizona, United States of America.

出版信息

PLoS One. 2024 Feb 14;19(2):e0287878. doi: 10.1371/journal.pone.0287878. eCollection 2024.

Abstract

E-cigarette use among adolescents is a national health epidemic spreading faster than researchers can amass evidence for risk and protective factors and long-term consequences associated with use. New technologies, such as machine learning, may assist prevention programs in identifying at risk youth and potential targets for intervention before adolescents enter developmental periods where e-cigarette use escalates. The present study utilized machine learning algorithms to explore a wide array of individual and socioecological variables in relation to patterns of lifetime e-cigarette use during early adolescence (i.e., exclusive, or with tobacco cigarettes). Extant data was used from 14,346 middle school students (Mage = 12.5, SD = 1.1; 6th and 8th grades) who participated in the Utah Prevention Needs Assessment. Students self-reported their substance use behaviors and related risk and protective factors. Machine learning algorithms examined 112 individual and socioecological factors as potential classifiers of lifetime e-cigarette use outcomes. The elastic net algorithm achieved outstanding classification for lifetime exclusive (AUC = .926) and dual use (AUC = .944) on a validation test set. Six high value classifiers were identified that varied in importance by outcome: Lifetime alcohol or marijuana use, perception of e-cigarette availability and risk, school suspension(s), and perceived risk of smoking marijuana regularly. Specific classifiers were important for lifetime exclusive (parent's attitudes regarding student vaping, best friend[s] tried alcohol or marijuana) and dual use (best friend[s] smoked cigarettes, lifetime inhalant use). Our findings provide specific targets for the adaptation of existing substance use prevention programs to address early adolescent e-cigarette use.

摘要

青少年使用电子烟是一种全国性的健康流行趋势,其传播速度之快,以至于研究人员难以收集与使用相关的风险和保护因素以及长期后果的证据。新技术,如机器学习,可能有助于预防计划识别处于危险中的青少年,并在青少年进入电子烟使用加剧的发展阶段之前,确定潜在的干预目标。本研究利用机器学习算法探索了广泛的个体和社会生态变量与青少年早期(即单独使用或与烟草香烟一起使用)的终生电子烟使用模式之间的关系。利用了来自 14346 名中学生(平均年龄= 12.5,标准差= 1.1;6 年级和 8 年级)的现有数据,他们参加了犹他州预防需求评估。学生自我报告他们的物质使用行为和相关的风险和保护因素。机器学习算法检查了 112 个个体和社会生态因素,作为终生电子烟使用结果的潜在分类器。弹性网络算法在验证测试集中实现了出色的终生电子烟单独使用(AUC =.926)和双重使用(AUC =.944)分类。确定了六个高价值分类器,它们的重要性因结果而异:终生酒精或大麻使用、对电子烟可获得性和风险的感知、学校停学和定期吸烟大麻的感知风险。特定的分类器对终生电子烟单独使用(父母对学生吸食电子烟的态度、最好的朋友尝试过酒精或大麻)和双重使用(最好的朋友吸烟、终生吸入剂使用)很重要。我们的研究结果为适应现有的物质使用预防计划提供了具体目标,以解决青少年早期电子烟使用问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be27/10866513/a5d1d2bad0c8/pone.0287878.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验