Suppr超能文献

当代烟草研究中机器学习的应用

Harnessing machine learning in contemporary tobacco research.

作者信息

Sinha Krishnendu, Ghosh Nabanita, Sil Parames C

机构信息

Jhargram Raj College, Jhargram 721507, India.

Maulana Azad College, Kolkata 700013, India.

出版信息

Toxicol Rep. 2024 Dec 19;14:101877. doi: 10.1016/j.toxrep.2024.101877. eCollection 2025 Jun.

Abstract

Machine learning (ML) has the potential to transform tobacco research and address the urgent public health crisis posed by tobacco use. Despite the well-documented health risks, cessation rates remain low. ML techniques offer innovative solutions by analyzing vast datasets to uncover patterns in smoking behavior, genetic predispositions, and effective cessation strategies. ML can predict smoking-induced non-communicable diseases (SiNCDs) like lung cancer and postmenopausal osteoporosis by identifying biomarkers and genetic profiles, generating personalized predictions, and guiding interventions. It also improves prediction of infant tobacco smoke exposure, distinguishes secondhand and thirdhand smoke, and enhances protection strategies for children. Data-driven, personalized approaches using ML track real-time data for personalized feedback and offer timely interventions, continuously improving cessation strategies. Overall, ML provides sophisticated predictive models, enhances understanding of complex biological mechanisms, and enables personalized interventions, demonstrating significant potential in the fight against the tobacco epidemic.

摘要

机器学习(ML)有潜力变革烟草研究,并应对烟草使用所带来的紧迫公共卫生危机。尽管吸烟对健康的危害已有充分记录,但戒烟率仍然很低。机器学习技术通过分析海量数据集来揭示吸烟行为、遗传易感性和有效戒烟策略中的模式,从而提供创新解决方案。机器学习可以通过识别生物标志物和基因特征、生成个性化预测并指导干预措施,来预测吸烟引发的非传染性疾病(SiNCDs),如肺癌和绝经后骨质疏松症。它还能改进对婴儿烟草烟雾暴露的预测,区分二手烟和三手烟,并加强针对儿童的保护策略。使用机器学习的数据驱动型个性化方法可跟踪实时数据以提供个性化反馈,并及时进行干预,不断改进戒烟策略。总体而言,机器学习提供了复杂的预测模型,增强了对复杂生物机制的理解,并实现了个性化干预,在抗击烟草流行方面显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/094d/11750557/0afdbc391cb9/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验