Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.
Med Phys. 2024 Apr;51(4):2424-2443. doi: 10.1002/mp.16983. Epub 2024 Feb 14.
Standards for image quality evaluation in multi-detector CT (MDCT) and cone-beam CT (CBCT) are evolving to keep pace with technological advances. A clear need is emerging for methods that facilitate rigorous quality assurance (QA) with up-to-date metrology and streamlined workflow suitable to a range of MDCT and CBCT systems.
To evaluate the feasibility and workflow associated with image quality (IQ) assessment in longitudinal studies for MDCT and CBCT with a single test phantom and semiautomated analysis of objective, quantitative IQ metrology.
A test phantom (Corgi Phantom, The Phantom Lab, Greenwich, New York, USA) was used in monthly IQ testing over the course of 1 year for three MDCT scanners (one of which presented helical and volumetric scan modes) and four CBCT scanners. Semiautomated software analyzed image uniformity, linearity, contrast, noise, contrast-to-noise ratio (CNR), 3D noise-power spectrum (NPS), modulation transfer function (MTF) in axial and oblique directions, and cone-beam artifact magnitude. The workflow was evaluated using methods adapted from systems/industrial engineering, including value stream process modeling (VSPM), standard work layout (SWL), and standard work control charts (SWCT) to quantify and optimize test methodology in routine practice. The completeness and consistency of DICOM data from each system was also evaluated.
Quantitative IQ metrology provided valuable insight in longitudinal quality assurance (QA), with metrics such as NPS and MTF providing insight on root cause for various forms of system failure-for example, detector calibration and geometric calibration. Monthly constancy testing showed variations in IQ test metrics owing to system performance as well as phantom setup and provided initial estimates of upper and lower control limits appropriate to QA action levels. Rigorous evaluation of QA workflow identified methods to reduce total cycle time to ∼10 min for each system-viz., use of a single phantom configuration appropriate to all scanners and Head or Body scan protocols. Numerous gaps in the completeness and consistency of DICOM data were observed for CBCT systems.
An IQ phantom and test methodology was found to be suitable to QA of MDCT and CBCT systems with streamlined workflow appropriate to busy clinical settings.
随着多探测器 CT(MDCT)和锥形束 CT(CBCT)技术的不断发展,图像质量评估标准也在不断更新。因此,需要一种新的方法来进行严格的质量保证(QA),这种方法应采用最新的计量学方法,并简化工作流程,使其适用于多种 MDCT 和 CBCT 系统。
评估使用单个测试体模和半自动分析客观、定量图像质量(IQ)计量学,对 MDCT 和 CBCT 进行纵向研究时的可行性和工作流程。
使用 Corgi 测试体模(The Phantom Lab,Greenwich,New York,USA)对 3 台 MDCT 扫描仪(其中一台提供螺旋和容积扫描模式)和 4 台 CBCT 扫描仪进行为期 1 年的每月 IQ 测试。半自动软件分析图像均匀性、线性、对比度、噪声、对比噪声比(CNR)、3D 噪声功率谱(NPS)、轴向和斜向调制传递函数(MTF)以及锥形束伪影幅度。采用系统/工业工程学中的方法(包括价值流过程建模(VSPM)、标准作业布局(SWL)和标准作业控制图(SWCT))来评估工作流程,以量化和优化常规实践中的测试方法。还评估了每个系统的 DICOM 数据的完整性和一致性。
纵向质量保证(QA)中使用定量 IQ 计量学提供了有价值的信息,例如 NPS 和 MTF 等指标可深入了解各种系统故障的根本原因,例如探测器校准和几何校准。每月的稳定性测试显示,由于系统性能以及测试体模的设置,IQ 测试指标有所变化,这为 QA 行动水平提供了上下控制限的初步估计。对 QA 工作流程的严格评估确定了减少每个系统总循环时间至约 10 分钟的方法,即针对所有扫描仪和头或体扫描协议使用单个测试体模配置。还观察到 CBCT 系统的 DICOM 数据完整性和一致性存在许多问题。
发现 IQ 测试体模和测试方法适用于 MDCT 和 CBCT 系统的 QA,其工作流程简化,适用于繁忙的临床环境。