Suppr超能文献

技术说明:评估每月 CBCT 图像质量 QA 的性能。

Technical Note: Assessing the performance of monthly CBCT image quality QA.

机构信息

Department of Radiation Medicine and Applied Sciences, University of California San Diego, 3855 Health Sciences Dr., La Jolla, CA, 92093, USA.

出版信息

Med Phys. 2019 Jun;46(6):2575-2579. doi: 10.1002/mp.13535. Epub 2019 Apr 24.

Abstract

PURPOSE

To assess the performance of routine cone-beam computed tomography (CBCT) quality assurance (QA) at predicting and diagnosing clinically recognizable linac CBCT image quality issues.

METHODS

Monthly automated linac CBCT image quality QA data were acquired on eight Varian linacs (Varian Medical Systems, Palo Alto, CA) using the CATPHAN 500 series phantom (The Phantom Laboratory, Inc., Greenwich, NY) and Total QA software (Image Owl, Inc., Greenwich, NY) over 34 months between July 2014 and May 2017. For each linac, the following image quality metrics were acquired: geometric distortion, spatial resolution, Hounsfield Unit (HU) constancy, uniformity, and noise. Quality control (QC) limits were determined by American Association of Physicists in Medicine (AAPM) expert consensus documents Task Group (TG-142 and TG-179) and the manufacturer acceptance testing procedure. Clinically recognizable CBCT issues were extracted from the in-house incident learning system (ILS) and service reports. The sensitivity and specificity of CATPHAN QA at predicting clinically recognizable image quality issues was investigated. Sensitivity was defined as the percentage of clinically recognizable CBCT image quality issues that followed a failing CATPHAN QA. Quality assurance results are categorized as failing if one or more image quality metrics are outside the QC limits. The specificity of CATPHAN QA was defined as one minus the fraction of failing CATPHAN QA results that did not have a clinically recognizable CBCT image quality issue in the subsequent month. Receiver operating characteristic (ROC) curves were generated for each image quality metric by plotting the true positive rate (TPR) against the false-positive rate (FPR).

RESULTS

Over the study period, 18 image quality issues were discovered by clinicians while using CBCT to set up the patient and five were reported prior to x-ray tube repair. The incidents ranged from ring artifacts to uniformity problems. The sensitivity of the TG-142/179 limits was 17% (four of the prior monthly QC tests detected a clinically recognizable image quality issue). The area under the curve (AUC) calculated for each image quality metric ROC curve was: 0.85 for uniformity, 0.66 for spatial resolution, 0.51 for geometric distortion, 0.56 for noise, 0.73 for HU constancy, and 0.59 for contrast resolution.

CONCLUSION

Automated monthly QA is not a good predictor of CBCT image quality issues. Of the available metrics, uniformity has the best predictive performance, but still has a high FPR and low sensitivity. The poor performance of CATPHAN QA as a predictor of image quality problems is partially due to its reliance on region-of-interest (ROI) based algorithms and a lack of a global algorithm such as correlation. The manner in which image quality issues occur (trending toward failure or random) is still not known and should be studied further. CBCT image quality QA should be adapted based on how CBCT is used clinically.

摘要

目的

评估常规锥形束 CT(CBCT)质量保证(QA)在预测和诊断临床可识别的直线加速器 CBCT 图像质量问题方面的性能。

方法

2014 年 7 月至 2017 年 5 月,34 个月期间,在 8 台瓦里安直线加速器(瓦里安医疗系统公司,帕洛阿尔托,加利福尼亚州)上使用 CATPHAN 500 系列体模(幻影实验室公司,格林威治,纽约)和 Total QA 软件(Image Owl 公司,格林威治,纽约)每月自动获取直线加速器 CBCT 图像质量 QA 数据。对于每台直线加速器,获取以下图像质量指标:几何失真、空间分辨率、亨氏单位(HU)一致性、均匀性和噪声。质量控制(QC)限值由美国医学物理学家协会(AAPM)专家共识文件任务组(TG-142 和 TG-179)和制造商验收测试程序确定。从内部事故学习系统(ILS)和服务报告中提取临床可识别的 CBCT 问题。研究了 CATPHAN QA 预测临床可识别图像质量问题的灵敏度和特异性。灵敏度定义为遵循失败的 CATPHAN QA 的临床可识别 CBCT 图像质量问题的百分比。如果一个或多个图像质量指标超出 QC 限制,则 QA 结果被归类为失败。CATPHAN QA 的特异性定义为没有临床可识别的 CBCT 图像质量问题的后续月份中失败的 CATPHAN QA 结果的分数。通过绘制真阳性率(TPR)与假阳性率(FPR)来为每个图像质量指标生成接收器操作特性(ROC)曲线。

结果

在研究期间,临床医生在使用 CBCT 为患者设置时发现了 18 个图像质量问题,在 X 射线管维修之前报告了 5 个问题。这些事件的范围从环形伪影到均匀性问题。TG-142/179 限值的灵敏度为 17%(前四个每月 QC 测试检测到一个临床可识别的图像质量问题)。为每个图像质量指标 ROC 曲线计算的曲线下面积(AUC)为:均匀性为 0.85,空间分辨率为 0.66,几何失真为 0.51,噪声为 0.56,HU 一致性为 0.73,对比度分辨率为 0.59。

结论

自动每月 QA 不是 CBCT 图像质量问题的良好预测指标。在可用的指标中,均匀性具有最佳的预测性能,但仍然具有较高的 FPR 和较低的灵敏度。CATPHAN QA 作为图像质量问题预测器的性能不佳部分归因于其对感兴趣区域(ROI)的依赖基于算法和缺乏全局算法,例如相关性。图像质量问题发生的方式(趋向于故障或随机)仍不清楚,应进一步研究。应根据 CBCT 在临床中的使用方式来调整 CBCT 图像质量 QA。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验