Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark.
Department of Chemistry and Bioscience, Section for Bioscience and Engineering, Aalborg University, Aalborg, Denmark.
N Biotechnol. 2024 May 25;80:56-68. doi: 10.1016/j.nbt.2024.02.001. Epub 2024 Feb 12.
Antibody phage-display technology identifies antibody-antigen interactions through multiple panning rounds, but traditional screening gives no information on enrichment or diversity throughout the process. This results in the loss of valuable binders. Next Generation Sequencing can overcome this problem. We introduce a high accuracy long-read sequencing method based on the recent Oxford Nanopore Technologies (ONT) Q20 + chemistry in combination with dual unique molecular identifiers (UMIs) and an optimized bioinformatic analysis pipeline to monitor the selections. We identified binders from two single-domain antibody libraries selected against a model protein. Traditional colony-picking was compared with our ONT-UMI method. ONT-UMI enabled monitoring of diversity and enrichment before and after each selection round. By combining phage antibody selections with ONT-UMIs, deep mining of output selections is possible. The approach provides an alternative to traditional screening, enabling diversity quantification after each selection round and rare binder recovery, even when the dominating binder was > 99% abundant. Moreover, it can give insights on binding motifs for further affinity maturation and specificity optimizations. Our results demonstrate a platform for future data guided selection strategies.
噬菌体展示技术通过多轮淘选来识别抗体-抗原相互作用,但传统的筛选方法无法提供整个过程中富集或多样性的信息,导致有价值的结合物丢失。下一代测序可以克服这个问题。我们引入了一种基于最近的牛津纳米孔技术(ONT)Q20+化学的高精度长读测序方法,结合双独特分子标识符(UMI)和优化的生物信息学分析管道来监测选择。我们从针对模型蛋白筛选的两个单域抗体文库中鉴定出了结合物。传统的集落挑取法与我们的 ONT-UMI 方法进行了比较。ONT-UMI 能够在每轮选择前后监测多样性和富集情况。通过将噬菌体抗体选择与 ONT-UMIs 相结合,可以对输出选择进行深度挖掘。该方法为传统筛选提供了一种替代方法,能够在每轮选择后进行多样性定量,并回收稀有结合物,即使主导结合物的丰度>99%。此外,它还可以提供进一步的亲和力成熟和特异性优化的结合基序的见解。我们的结果展示了一种用于未来数据指导选择策略的平台。