College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
Bioresour Technol. 2024 Apr;397:130452. doi: 10.1016/j.biortech.2024.130452. Epub 2024 Feb 12.
This study utilized corn straw as the feedstock to synthesize biochar (BC) loaded with cobalt-zeolitic imidazolate framework nanoparticles and boron nitride quantum dots. The prepared BC composite, named BNZBC, efficiently activated peracetic acid (PAA), resulting in the degradation of 94.8% of sulfadiazine (SDZ) in five minutes. Compared to pure BC, the SDZ removal rate increased nearly 5-fold. Mechanism analysis revealed that the main degradation pathway involves synergism between free and non-free radicals. The defect structure on the BC surface possesses a high charge density, stimulating PAA to produce more active species, while nitrogen-oxygen vacancy formation significantly promotes charge transfer. Besides, the unique structure of BC ensures good stability and recyclability, effectively controlling metal leaching. The BNZBC/PAA system shows promising applicability across various water matrices, indicating a favorable application outlook.
本研究以玉米秸秆为原料,合成了负载钴沸石咪唑酯骨架纳米粒子和氮化硼量子点的生物炭(BC)。所制备的 BC 复合材料命名为 BNZBC,可高效激活过氧乙酸(PAA),在五分钟内将磺胺嘧啶(SDZ)的降解率提高到 94.8%。与纯 BC 相比,SDZ 的去除率提高了近 5 倍。机理分析表明,主要的降解途径是自由基和非自由基之间的协同作用。BC 表面的缺陷结构具有较高的电荷密度,刺激 PAA 产生更多的活性物质,而氮氧空位的形成则显著促进了电荷转移。此外,BC 的独特结构确保了良好的稳定性和可回收性,有效控制了金属浸出。BNZBC/PAA 体系在各种水基质中表现出良好的适用性,具有良好的应用前景。