Suppr超能文献

生物炭复合材料(BNZBC)活化过氧乙酸高效降解抗生素的机制:自由基与非自由基的协同作用。

Mechanism of biochar composite (BNZBC) activated peracetic acid for efficient antibiotic degradation: Synergistic effect between free radicals and non-free radicals.

机构信息

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.

College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.

出版信息

Bioresour Technol. 2024 Apr;397:130452. doi: 10.1016/j.biortech.2024.130452. Epub 2024 Feb 12.

Abstract

This study utilized corn straw as the feedstock to synthesize biochar (BC) loaded with cobalt-zeolitic imidazolate framework nanoparticles and boron nitride quantum dots. The prepared BC composite, named BNZBC, efficiently activated peracetic acid (PAA), resulting in the degradation of 94.8% of sulfadiazine (SDZ) in five minutes. Compared to pure BC, the SDZ removal rate increased nearly 5-fold. Mechanism analysis revealed that the main degradation pathway involves synergism between free and non-free radicals. The defect structure on the BC surface possesses a high charge density, stimulating PAA to produce more active species, while nitrogen-oxygen vacancy formation significantly promotes charge transfer. Besides, the unique structure of BC ensures good stability and recyclability, effectively controlling metal leaching. The BNZBC/PAA system shows promising applicability across various water matrices, indicating a favorable application outlook.

摘要

本研究以玉米秸秆为原料,合成了负载钴沸石咪唑酯骨架纳米粒子和氮化硼量子点的生物炭(BC)。所制备的 BC 复合材料命名为 BNZBC,可高效激活过氧乙酸(PAA),在五分钟内将磺胺嘧啶(SDZ)的降解率提高到 94.8%。与纯 BC 相比,SDZ 的去除率提高了近 5 倍。机理分析表明,主要的降解途径是自由基和非自由基之间的协同作用。BC 表面的缺陷结构具有较高的电荷密度,刺激 PAA 产生更多的活性物质,而氮氧空位的形成则显著促进了电荷转移。此外,BC 的独特结构确保了良好的稳定性和可回收性,有效控制了金属浸出。BNZBC/PAA 体系在各种水基质中表现出良好的适用性,具有良好的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验