Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
Nature. 2024 Feb;626(8001):1116-1124. doi: 10.1038/s41586-024-07081-0. Epub 2024 Feb 14.
Transposable elements (TEs) are a major constituent of human genes, occupying approximately half of the intronic space. During pre-messenger RNA synthesis, intronic TEs are transcribed along with their host genes but rarely contribute to the final mRNA product because they are spliced out together with the intron and rapidly degraded. Paradoxically, TEs are an abundant source of RNA-processing signals through which they can create new introns, and also functional or non-functional chimeric transcripts. The rarity of these events implies the existence of a resilient splicing code that is able to suppress TE exonization without compromising host pre-mRNA processing. Here we show that SAFB proteins protect genome integrity by preventing retrotransposition of L1 elements while maintaining splicing integrity, via prevention of the exonization of previously integrated TEs. This unique dual role is possible because of L1's conserved adenosine-rich coding sequences that are bound by SAFB proteins. The suppressive activity of SAFB extends to tissue-specific, giant protein-coding cassette exons, nested genes and Tigger DNA transposons. Moreover, SAFB also suppresses LTR/ERV elements in species in which they are still active, such as mice and flies. A significant subset of splicing events suppressed by SAFB in somatic cells are activated in the testis, coinciding with low SAFB expression in postmeiotic spermatids. Reminiscent of the division of labour between innate and adaptive immune systems that fight external pathogens, our results uncover SAFB proteins as an RNA-based, pattern-guided, non-adaptive defence system against TEs in the soma, complementing the RNA-based, adaptive Piwi-interacting RNA pathway of the germline.
转座元件 (TEs) 是人类基因的主要组成部分,约占内含子空间的一半。在信使 RNA 前体合成过程中,内含子 TEs 与它们的宿主基因一起转录,但由于它们与内含子一起被剪接并迅速降解,很少参与最终的 mRNA 产物。矛盾的是,TEs 是丰富的 RNA 加工信号来源,通过这些信号可以产生新的内含子,以及功能性或非功能性的嵌合转录本。这些事件的罕见性意味着存在一种有弹性的剪接密码,它能够抑制 TE 的外显子化,而不影响宿主前 mRNA 的处理。在这里,我们表明 SAFB 蛋白通过防止 L1 元件的逆转录转座来保护基因组的完整性,同时通过防止先前整合的 TEs 的外显子化来维持剪接的完整性。这种独特的双重作用是可能的,因为 L1 有保守的富含腺苷的编码序列,这些序列被 SAFB 蛋白结合。SAFB 的抑制活性扩展到组织特异性的、巨大的蛋白编码盒外显子、嵌套基因和 Tigger DNA 转座子。此外,SAFB 还抑制在其仍然活跃的物种中的 LTR/ERV 元件,如老鼠和苍蝇。SAFB 在体细胞中抑制的显著部分剪接事件在睾丸中被激活,与减数分裂后精子细胞中 SAFB 表达水平低相吻合。类似于先天和适应性免疫系统之间分工的模式,即先天免疫系统对抗外部病原体,我们的结果揭示了 SAFB 蛋白作为一种基于 RNA 的、模式指导的、非适应性防御系统,针对体细胞中的 TEs,补充了生殖系中基于 RNA 的适应性 Piwi 相互作用 RNA 途径。