Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK.
CPT Pharmacometrics Syst Pharmacol. 2024 Apr;13(4):524-543. doi: 10.1002/psp4.13110. Epub 2024 Feb 14.
Organ-on-a-chip (OoC) systems are a promising new class of in vitro devices that can combine various tissues, cultured in different compartments, linked by media flow. The properties of these novel in vitro systems linked to increased physiological relevance of culture conditions may lead to more in vivo-relevant cell phenotypes, enabling better in vitro pharmacology and toxicology assessment. Improved cell activities combined with longer lasting cultures offer opportunities to improve the characterization of absorption, distribution, metabolism, and excretion (ADME) processes, potentially leading to more accurate prediction of human pharmacokinetics (PKs). The inclusion of barrier tissue elements and metabolically competent tissue types results in complex concentration-time profiles (in vitro PK) for test drugs and their metabolites that require appropriate mathematical modeling of in vitro data for parameter estimation. In particular, modeling is critical to estimate in vitro ADME parameters when multiple different tissues are combined in a single device. Therefore, sophisticated in silico data analysis and a priori experimental design are highly recommended for OoC experiments in a manner not needed with standard ADME screening. The design of the experiment should be optimized based on an investigation of the structural characteristics of the in vitro system, the ADME features of the test compound and any available knowledge of cell phenotypes. This tutorial aims to provide such a modeling framework to inform experimental design and refine parameter estimation in a Gut-Liver OoC (the most studied multi-organ systems to predict the oral drug PKs) to improve translatability of data generated in such complex cellular systems.
器官芯片(OoC)系统是一类很有前途的新型体外设备,可将不同组织培养在不同隔室中,并通过介质流连接起来。这些新型体外系统的特性与培养条件的生理相关性增加有关,可能导致更接近体内的细胞表型,从而能够更好地进行体外药理学和毒理学评估。细胞活性的提高和更长时间的培养为改善吸收、分布、代谢和排泄(ADME)过程的特性提供了机会,从而有可能更准确地预测人体药代动力学(PK)。包括屏障组织元件和具有代谢能力的组织类型在内,导致了测试药物及其代谢物的复杂浓度-时间曲线(体外 PK),这需要对体外数据进行适当的数学建模以进行参数估计。特别是,当在单个设备中组合多种不同组织时,建模对于估计体外 ADME 参数至关重要。因此,建议在进行 OoC 实验时采用复杂的计算机数据分析和先验实验设计,而不需要进行标准 ADME 筛选。应根据对体外系统的结构特征、测试化合物的 ADME 特征以及任何可用的细胞表型知识的调查来优化实验设计。本教程旨在提供这样的建模框架,以告知实验设计并改进肠道-肝脏 OoC(研究最多的多器官系统,用于预测口服药物 PK)中的参数估计,以提高在这种复杂细胞系统中生成的数据的可转化性。