Nganko Junior Maimou, Koffi Ekoun Paul Magloire, Gbaha Prosper, Toure Alpha Ousmane, Kane Moustapha, Ndiaye Babacar, Faye Mamadou, Nkounga Willy Magloire, Tiogue Tekounegning Claudine, Bile Echua Elisabeth Jasmine, Yao Kouassi Benjamin
Laboratory of Industrial Processes of Synthesis of the Environment and New Energy National Polytechnic Institute Felix Houphouët Boigny, BP:1093 Yamoussoukro RCI, Ivory Coast.
Laboratory of Water Energy Environment and Industrial Processes ESP-Cheikh Anta Diop University, BP:5085, Dakar-Fann, Senegal.
Heliyon. 2024 Feb 1;10(3):e25376. doi: 10.1016/j.heliyon.2024.e25376. eCollection 2024 Feb 15.
The importance of parameters such as compaction pressure, binder percentage and retention time and their interaction in the production of carbonized briquettes for domestic or industrial use cannot be overestimated, as they have a considerable impact on the properties of the resulting briquettes. This study used Box-Behnken Response Surface Methodology (RSM) and Analysis Of Variance (ANOVA) to show how the above parameters and their interactions significantly influence the Higher Heating Value (HHV), ash content and Impact Resistance Index (IRI) of the biofuels obtained. The briquettes are characterized in accordance with American Society for Testing and Materials ASTM D-(5865 and 3172). IRI is determined by the drop test. The Niton XLT900s X-ray fluorescence spectrometer is used for mineralogical analysis. The peel starch used as a binder is characterized by the Association of Official Agricultural Chemists standard. This starch has a starch purity of 89.8 %, an HHV of 13974 kJ/kg, a protein content of 4.79 % and a sugar content of 1.3 %. The HHV of the biofuels ranged from 23783 to 26050 kJ/kg, their ash content from 2.86 to 5.24 %, and the IRI from 136.36 to 500 %. The significant effect of binder on these results is confirmed (p < 0.05). The Standard deviations of ± 21.425 kJ/kg, ± 0.021 % and ± 2.121 % were obtained between the experimental values and those of the mathematical models developed to predict HHV, ash content and IRI. The optimum parameters for industrial biofuel production correspond to a binder percentage of 10 %, a compaction pressure of 75 kPa and a retention time of 7.49 min. The experimental results under these conditions are: 25596 kJ/kg, 3.01 % and 375 % for HHV, ash content and IRI. In correlation with the absence of certain heavy metals, the study confirms that the briquettes produced are suitable for domestic use.
诸如压制压力、粘结剂百分比和保留时间等参数及其相互作用在生产家用或工业用碳化型煤中的重要性无论如何高估都不为过,因为它们对所得型煤的性能有相当大的影响。本研究采用Box-Behnken响应面法(RSM)和方差分析(ANOVA)来展示上述参数及其相互作用如何显著影响所获得生物燃料的高热值(HHV)、灰分含量和抗冲击指数(IRI)。型煤根据美国材料与试验协会ASTM D-(5865和3172)进行表征。IRI通过落锤试验测定。使用Niton XLT900s X射线荧光光谱仪进行矿物学分析。用作粘结剂的果皮淀粉按照官方农业化学家协会标准进行表征。这种淀粉的淀粉纯度为89.8%,高热值为13974 kJ/kg,蛋白质含量为4.79%,糖含量为1.3%。生物燃料的高热值范围为23783至26050 kJ/kg,灰分含量为2.86至5.24%,抗冲击指数为136.36至500%。粘结剂对这些结果的显著影响得到了证实(p < 0.05)。在实验值与为预测高热值、灰分含量和抗冲击指数而建立的数学模型值之间,获得了±21.425 kJ/kg、±0.021%和±2.121%的标准偏差。工业生物燃料生产的最佳参数对应于10%的粘结剂百分比、75 kPa的压制压力和7.49分钟的保留时间。在这些条件下的实验结果为:高热值25596 kJ/kg、灰分含量3.01%和抗冲击指数375%。与某些重金属的不存在相关,该研究证实所生产的型煤适合家庭使用。