Vitali Valentina, Ackermann Katrin, Hagelueken Gregor, Bode Bela E
EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland.
Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.
Appl Magn Reson. 2024;55(1-3):187-205. doi: 10.1007/s00723-023-01611-1. Epub 2023 Sep 24.
Biomolecular applications of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) are becoming increasingly valuable in structural biology. Site-directed spin labelling of proteins is routinely performed using nitroxides, with paramagnetic metal ions and other organic radicals gaining popularity as alternative spin centres. Spectroscopically orthogonal spin labelling using different types of labels potentially increases the information content available from a single sample. When analysing experimental distance distributions between two nitroxide spin labels, the site-specific rotamer information has been projected into the distance and is not readily available, and the contributions of individual labelling sites to the width of the distance distribution are not obvious from the PDS data. Here, we exploit the exquisite precision of labelling double-histidine (dHis) motifs with Cu chelate complexes. The contribution of this label to the distance distribution widths in model protein GB1 has been shown to be negligible. By combining a dHis Cu labelling site with cysteine-specific nitroxide labelling, we gather insights on the label rotamers at two distinct sites, comparing their contributions to distance distributions based on different in silico modelling approaches and structural models. From this study, it seems advisable to consider discrepancies between different in silico modelling approaches when selecting labelling sites for PDS studies.
The online version contains supplementary material available at 10.1007/s00723-023-01611-1.
脉冲双极电子顺磁共振光谱(PDS)在生物分子应用方面在结构生物学中变得越来越有价值。蛋白质的定点自旋标记通常使用氮氧化物进行,顺磁性金属离子和其他有机自由基作为替代自旋中心越来越受欢迎。使用不同类型的标记进行光谱正交自旋标记可能会增加单个样品可获得的信息内容。在分析两个氮氧化物自旋标记之间的实验距离分布时,位点特异性旋转异构体信息已投影到距离中,不易获得,并且从PDS数据中单个标记位点对距离分布宽度的贡献不明显。在这里,我们利用用铜螯合物标记双组氨酸(dHis)基序的高精度。已证明该标记对模型蛋白GB1中距离分布宽度的贡献可忽略不计。通过将dHis铜标记位点与半胱氨酸特异性氮氧化物标记相结合,我们获得了关于两个不同位点处标记旋转异构体的见解,基于不同的计算机模拟方法和结构模型比较它们对距离分布的贡献。从这项研究来看,在为PDS研究选择标记位点时,考虑不同计算机模拟方法之间的差异似乎是明智的。
在线版本包含可在10.1007/s00723-023-01611-1获取的补充材料。