Suppr超能文献

利用英国生物银行和韩国基因组与流行病学研究数据评估GPT-4对10年心血管疾病风险的预测能力

Evaluation of GPT-4 for 10-year cardiovascular risk prediction: Insights from the UK Biobank and KoGES data.

作者信息

Han Changho, Kim Dong Won, Kim Songsoo, Chan You Seng, Park Jin Young, Bae SungA, Yoon Dukyong

机构信息

Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yongin, Republic of Korea.

Institute for Innovation in Digital Healthcare, Severance Hospital, Seoul, Republic of Korea.

出版信息

iScience. 2024 Jan 24;27(2):109022. doi: 10.1016/j.isci.2024.109022. eCollection 2024 Feb 16.

Abstract

Cardiovascular disease (CVD) remains a pressing global health concern. While traditional risk prediction methods such as the Framingham and American College of Cardiology/American Heart Association (ACC/AHA) risk scores have been widely used in the practice, artificial intelligence (AI), especially GPT-4, offers new opportunities. Utilizing large scale of multi-center data from 47,468 UK Biobank participants and 5,718 KoGES participants, this study quantitatively evaluated the predictive capabilities of GPT-4 in comparison with traditional models. Our results suggest that the GPT-based score showed commendably comparable performance in CVD prediction when compared to traditional models (AUROC on UKB: 0.725 for GPT-4, 0.733 for ACC/AHA, 0.728 for Framingham; KoGES: 0.664 for GPT-4, 0.674 for ACC/AHA, 0.675 for Framingham). Even with omission of certain variables, GPT-4's performance was robust, demonstrating its adaptability to data-scarce situations. In conclusion, this study emphasizes the promising role of GPT-4 in predicting CVD risks across varied ethnic datasets, pointing toward its expansive future applications in the medical practice.

摘要

心血管疾病(CVD)仍然是一个紧迫的全球健康问题。虽然传统的风险预测方法,如弗雷明汉风险评分和美国心脏病学会/美国心脏协会(ACC/AHA)风险评分已在实践中广泛使用,但人工智能(AI),尤其是GPT-4,提供了新的机遇。本研究利用来自47468名英国生物银行参与者和5718名韩国基因组与流行病学研究(KoGES)参与者的大规模多中心数据,定量评估了GPT-4与传统模型相比的预测能力。我们的结果表明,与传统模型相比,基于GPT的评分在CVD预测中表现出相当可比的性能(在英国生物银行数据集上的受试者工作特征曲线下面积:GPT-4为0.725,ACC/AHA为0.733,弗雷明汉为0.728;在KoGES数据集上:GPT-4为0.664,ACC/AHA为0.674,弗雷明汉为0.675)。即使省略某些变量,GPT-4的性能依然稳健,表明其对数据稀缺情况的适应性。总之,本研究强调了GPT-4在预测不同种族数据集中CVD风险方面的潜在作用,预示着其在医学实践中广阔的未来应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe8/10865411/3f08268bf8d0/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验