Greenman John, Thorn Robin, Willey Neil, Ieropoulos Ioannis
School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom.
Civil, Maritime and Environmental Engineering Department, University of Southampton, Southampton, United Kingdom.
Front Bioeng Biotechnol. 2024 Jan 31;12:1276176. doi: 10.3389/fbioe.2024.1276176. eCollection 2024.
Microbial Fuel Cells (MFC) can be fuelled using biomass derived from dead plant material and can operate on plant produced chemicals such as sugars, carbohydrates, polysaccharides and cellulose, as well as being "fed" on a regular diet of primary biomass from plants or algae. An even closer relationship can exist if algae (e.g., prokaryotic microalgae or eukaryotic and unicellular algae) can colonise the open to air cathode chambers of MFCs driving photosynthesis, producing a high redox gradient due to the oxygenic phase of collective algal cells. The hybrid system is symbiotic; the conditions within the cathodic chamber favour the growth of microalgae whilst the increased redox and production of oxygen by the algae, favour a more powerful cathode giving a higher maximum voltage and power to the photo-microbial fuel cell, which can ultimately be harvested for a range of end-user applications. MFCs can utilise a wide range of plant derived materials including detritus, plant composts, rhizodeposits, root exudates, dead or dying macro- or microalgae, via Soil-based Microbial Fuel Cells, Sediment Microbial Fuel Cells, Plant-based microbial fuel cells, floating artificial islands and constructed artificial wetlands. This review provides a perspective on this aspect of the technology as yet another attribute of the benevolent Bioelectrochemical Systems.
微生物燃料电池(MFC)可以使用源自死亡植物材料的生物质作为燃料,并且可以利用植物产生的化学物质,如糖、碳水化合物、多糖和纤维素来运行,还可以以植物或藻类的初级生物质作为常规“食物”。如果藻类(如原核微藻或真核单细胞藻类)能够在MFC的开放式空气阴极室中定殖,驱动光合作用,由于藻类细胞群体的产氧阶段产生高氧化还原梯度,那么两者之间的关系会更为紧密。这种混合系统是共生的;阴极室内的条件有利于微藻生长,而藻类增加的氧化还原作用和产氧作用则有利于形成更强有力的阴极,从而为光微生物燃料电池提供更高的最大电压和功率,最终可将其用于一系列终端用户应用。MFC可以通过基于土壤的微生物燃料电池、沉积物微生物燃料电池、基于植物的微生物燃料电池、漂浮人工岛和人工湿地等,利用多种植物衍生材料,包括碎屑、植物堆肥、根际沉积物、根系分泌物、死亡或濒死的大型或微型藻类。本综述从技术的这一方面提供了一个视角,将其视为有益的生物电化学系统的又一特性。