Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China.
Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
RNA Biol. 2024 Jan;21(1):1-10. doi: 10.1080/15476286.2024.2315384. Epub 2024 Feb 15.
RNA modifications play crucial roles in various biological processes and diseases. Accurate prediction of RNA modification sites is essential for understanding their functions. In this study, we propose a hybrid approach that fuses a pre-trained sequence representation with various sequence features to predict multiple types of RNA modifications in one combined prediction framework. We developed MRM-BERT, a deep learning method that combined the pre-trained DNABERT deep sequence representation module and the convolutional neural network (CNN) exploiting four traditional sequence feature encodings to improve the prediction performance. MRM-BERT was evaluated on multiple datasets of 12 commonly occurring RNA modifications, including mA, mC, mA and so on. The results demonstrate that our hybrid model outperforms other models in terms of area under receiver operating characteristic curve (AUC) for all 12 types of RNA modifications. MRM-BERT is available as an online tool (http://117.122.208.21:8501) or source code (https://github.com/abhhba999/MRM-BERT), which allows users to predict RNA modification sites and visualize the results. Overall, our study provides an effective and efficient approach to predict multiple RNA modifications, contributing to the understanding of RNA biology and the development of therapeutic strategies.
RNA 修饰在各种生物过程和疾病中起着至关重要的作用。准确预测 RNA 修饰位点对于理解它们的功能至关重要。在这项研究中,我们提出了一种混合方法,该方法将预先训练的序列表示与各种序列特征融合在一起,在一个组合预测框架中预测多种类型的 RNA 修饰。我们开发了 MRM-BERT,这是一种深度学习方法,它结合了预先训练的 DNABERT 深度序列表示模块和卷积神经网络 (CNN),利用四种传统的序列特征编码来提高预测性能。MRM-BERT 在多个数据集上进行了评估,这些数据集包含 12 种常见的 RNA 修饰,包括 mA、mC、mA 等。结果表明,我们的混合模型在所有 12 种 RNA 修饰的接收器操作特征曲线 (AUC) 方面均优于其他模型。MRM-BERT 可作为在线工具(http://117.122.208.21:8501)或源代码(https://github.com/abhhba999/MRM-BERT)使用,允许用户预测 RNA 修饰位点并可视化结果。总的来说,我们的研究为预测多种 RNA 修饰提供了一种有效且高效的方法,有助于理解 RNA 生物学和开发治疗策略。