Suppr超能文献

迈向广义少样本开放集目标检测

Towards Generalized Few-Shot Open-Set Object Detection.

作者信息

Su Binyi, Zhang Hua, Li Jingzhi, Zhou Zhong

出版信息

IEEE Trans Image Process. 2024 Feb 15;PP. doi: 10.1109/TIP.2024.3364495.

Abstract

Open-set object detection (OSOD) aims to detect the known categories and reject unknown objects in a dynamic world, which has achieved significant attention. However, previous approaches only consider this problem in data-abundant conditions, while neglecting the few-shot scenes. In this paper, we seek a solution for the generalized few-shot open-set object detection (G-FOOD), which aims to avoid detecting unknown classes as known classes with a high confidence score while maintaining the performance of few-shot detection. The main challenge for this task is that few training samples induce the model to overfit on the known classes, resulting in a poor open-set performance. We propose a new G-FOOD algorithm to tackle this issue, named Few-shOt Open-set Detector (FOOD), which contains a novel class weight sparsification classifier (CWSC) and a novel unknown decoupling learner (UDL). To prevent over-fitting, CWSC randomly sparses parts of the normalized weights for the logit prediction of all classes, and then decreases the co-adaptability between the class and its neighbors. Alongside, UDL decouples training the unknown class and enables the model to form a compact unknown decision boundary. Thus, the unknown objects can be identified with a confidence probability without any threshold, prototype, or generation. We compare our method with several state-of-the-art OSOD methods in few-shot scenes and observe that our method improves the F-score of unknown classes by 4.80%-9.08% across all shots in VOC-COCO dataset settings.

摘要

开放集目标检测(OSOD)旨在检测动态世界中的已知类别并拒绝未知物体,这一领域已受到广泛关注。然而,以往的方法仅在数据丰富的条件下考虑这个问题,而忽略了少样本场景。在本文中,我们寻求一种广义少样本开放集目标检测(G-FOOD)的解决方案,其目的是在保持少样本检测性能的同时,避免将未知类别误检测为已知类别并给出高置信度分数。这项任务的主要挑战在于,少量的训练样本会导致模型在已知类别上过度拟合,从而导致开放集性能不佳。我们提出了一种新的G-FOOD算法来解决这个问题,名为少样本开放集检测器(FOOD),它包含一个新颖的类权重稀疏化分类器(CWSC)和一个新颖的未知解耦学习器(UDL)。为了防止过度拟合,CWSC随机稀疏所有类别的logit预测的归一化权重的部分,然后降低类与其相邻类之间的共适应性。同时,UDL将未知类别的训练解耦,并使模型能够形成一个紧凑的未知决策边界。因此,无需任何阈值、原型或生成,就可以用置信概率识别未知物体。我们在少样本场景中将我们的方法与几种当前最先进的OSOD方法进行了比较,发现在VOC-COCO数据集设置下,我们的方法在所有样本上未知类别的F分数提高了4.80%-9.08%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验