Suppr超能文献

Near-field directionality governed by asymmetric dipole-matter interactions.

作者信息

Zhong Yuhan, Wang Chan, Bian Chenxu, Chen Xuhuinan, Chen Jialin, Zhu Xingjian, Hu Hao, Low Tony, Chen Hongsheng, Zhang Baile, Lin Xiao

出版信息

Opt Lett. 2024 Feb 15;49(4):826-829. doi: 10.1364/OL.515912.

Abstract

Directionally molding the near-field and far-field radiation lies at the heart of nanophotonics and is crucial for applications such as on-chip information processing and chiral quantum networks. The most fundamental model for radiating structures is a dipolar source located inside homogeneous matter. However, the influence of matter on the directionality of dipolar radiation is oftentimes overlooked, especially for the near-field radiation. As background, the dipole-matter interaction is intrinsically asymmetric and does not fulfill the duality principle, originating from the inherent asymmetry of Maxwell's equations, i.e., electric charge and current density are ubiquitous but their magnetic counterparts are non-existent to elusive. We find that the asymmetric dipole-matter interaction could offer an enticing route to reshape the directionality of not only the near-field radiation but also the far-field radiation. As an example, both the near-field and far-field radiation directionality of the Huygens dipole (located close to a dielectric-metal interface) would be reversed if the dipolar position is changed from the dielectric region to the metal region.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验