Suppr超能文献

重新构建麦克斯韦方程组以纳入近溶质溶剂结构。

Reformulation of Maxwell's equations to incorporate near-solute solvent structure.

作者信息

Yang Pei-Kun, Lim Carmay

机构信息

Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan R.O.C., and National Tsing Hua University, Hsinchu 300, Taiwan ROC.

出版信息

J Phys Chem B. 2008 Sep 4;112(35):10791-4. doi: 10.1021/jp805705m. Epub 2008 Aug 12.

Abstract

Maxwell's equations, which treat electromagnetic interactions between macroscopic charged objects in materials, have explained many phenomena and contributed to many applications in our lives. Derived in 1861 when no methods were available to determine the atomic structure of macromolecules, Maxwell's equations assume the solvent to be a structureless continuum. However, near-solute solvent molecules are highly structured, unlike far-solute bulk solvent molecules. Current methods cannot treat both the near-solute solvent structure and time-dependent electromagnetic interactions in a macroscopic system. Here, we derive "microscopic" electrodynamics equations that can treat macroscopic time-dependent electromagnetic field problems like Maxwell's equations and reproduce the solvent molecular and dipole density distributions observed in molecular dynamics simulations. These equations greatly reduce computational expense by not having to include explicit solvent molecules, yet they treat the solvent electrostatic and van der Waals effects more accurately than continuum models. They provide a foundation to study electromagnetic interactions between molecules in a macroscopic system that are ubiquitous in biology, bioelectromagnetism, and nanotechnology. The general strategy presented herein to incorporate the near-solute solvent structure would enable studies on how complex cellular protein-ligand interactions are affected by electromagnetic radiation, which could help to prevent harmful electromagnetic spectra or find potential therapeutic applications.

摘要

麦克斯韦方程组用于处理材料中宏观带电物体之间的电磁相互作用,它解释了许多现象,并在我们的生活中有诸多应用。麦克斯韦方程组于1861年推导得出,当时尚无确定大分子原子结构的方法,该方程组假定溶剂为无结构的连续介质。然而,靠近溶质的溶剂分子具有高度结构化,这与远离溶质的本体溶剂分子不同。当前方法无法处理宏观系统中靠近溶质的溶剂结构以及随时间变化的电磁相互作用。在此,我们推导了“微观”电动力学方程,该方程能够像麦克斯韦方程组一样处理宏观随时间变化的电磁场问题,并重现分子动力学模拟中观察到的溶剂分子和偶极密度分布。这些方程通过无需包含明确的溶剂分子而极大地降低了计算成本,同时它们比连续介质模型更精确地处理了溶剂的静电和范德华效应。它们为研究宏观系统中分子间的电磁相互作用提供了基础,这种相互作用在生物学、生物电磁学和纳米技术中无处不在。本文提出的纳入靠近溶质的溶剂结构的总体策略,将使人们能够研究复杂的细胞蛋白质 - 配体相互作用如何受到电磁辐射的影响,这有助于预防有害电磁光谱或找到潜在的治疗应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验