Suppr超能文献

针对小数据集的赫布式梦境。

Hebbian dreaming for small datasets.

机构信息

Department of Mathematics of Sapienza Università di Roma, Rome, Italy.

Department of Mathematics and Physics of Università del Salento, Lecce, Italy.

出版信息

Neural Netw. 2024 May;173:106174. doi: 10.1016/j.neunet.2024.106174. Epub 2024 Feb 12.

Abstract

The dreaming Hopfield model constitutes a generalization of the Hebbian paradigm for neural networks, that is able to perform on-line learning when "awake" and also to account for off-line "sleeping" mechanisms. The latter have been shown to enhance storing in such a way that, in the long sleep-time limit, this model can reach the maximal storage capacity achievable by networks equipped with symmetric pairwise interactions. In this paper, we inspect the minimal amount of information that must be supplied to such a network to guarantee a successful generalization, and we test it both on random synthetic and on standard structured datasets (i.e., MNIST, Fashion-MNIST and Olivetti). By comparing these minimal thresholds of information with those required by the standard (i.e., always "awake") Hopfield model, we prove that the present network can save up to ∼90% of the dataset size, yet preserving the same performance of the standard counterpart. This suggests that sleep may play a pivotal role in explaining the gap between the large volumes of data required to train artificial neural networks and the relatively small volumes needed by their biological counterparts. Further, we prove that the model Cost function (typically used in statistical mechanics) admits a representation in terms of a standard Loss function (typically used in machine learning) and this allows us to analyze its emergent computational skills both theoretically and computationally: a quantitative picture of its capabilities as a function of its control parameters is achieved and consistency between the two approaches is highlighted. The resulting network is an associative memory for pattern recognition tasks that learns from examples on-line, generalizes correctly (in suitable regions of its control parameters) and optimizes its storage capacity by off-line sleeping: such a reduction of the training cost can be inspiring toward sustainable AI and in situations where data are relatively sparse.

摘要

梦境霍普菲尔德模型是神经网络的赫布范式的推广,它能够在“清醒”时进行在线学习,并且能够解释离线“睡眠”机制。后者已被证明可以增强存储能力,以至于在长时间的睡眠限制下,该模型可以达到具有对称成对相互作用的网络所能达到的最大存储容量。在本文中,我们检查了必须提供给此类网络以保证成功泛化的最小信息量,并在随机合成数据集和标准结构化数据集(即 MNIST、Fashion-MNIST 和 Olivetti)上对其进行了测试。通过将这些最小信息量阈值与标准(即始终“清醒”)霍普菲尔德模型所需的信息量阈值进行比较,我们证明了当前网络可以节省多达 ∼90%的数据集大小,同时保持与标准对应物相同的性能。这表明睡眠可能在解释训练人工神经网络所需的大量数据与生物神经网络所需的相对较小的数据量之间的差距方面发挥着关键作用。此外,我们证明了模型成本函数(通常用于统计力学)可以表示为标准损失函数(通常用于机器学习),这使我们能够从理论和计算两个方面分析其新兴的计算技能:实现了其作为控制参数函数的能力的定量描述,并突出了两种方法之间的一致性。所得网络是一种用于模式识别任务的联想记忆,它可以在线从示例中学习,在适当的控制参数区域内正确泛化,并通过离线睡眠优化其存储容量:这种训练成本的降低可能会对可持续人工智能产生启发,并在数据相对稀疏的情况下有所帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验