Suppr超能文献

使用回归方法和机器学习从家庭层面预测青少年非自杀性自伤行为。

Prediction of non-suicidal self-injury in adolescents at the family level using regression methods and machine learning.

作者信息

Zhou Si Chen, Zhou Zhaohe, Tang Qi, Yu Ping, Zou Huijing, Liu Qian, Wang Xiao Qin, Jiang Jianmei, Zhou Yang, Liu Lianzhong, Yang Bing Xiang, Luo Dan

机构信息

Center for Wise Information Technology of Mental Health Nursing Research, School of Nursing, Wuhan University, Wuhan, China.

School of Basic Medical Sciences, Chengdu University, Chengdu, China.

出版信息

J Affect Disord. 2024 May 1;352:67-75. doi: 10.1016/j.jad.2024.02.039. Epub 2024 Feb 13.

Abstract

BACKGROUND

Adolescent non-suicidal self-injury (NSSI) is a major public health issue. Family factors are significantly associated with NSSI in adolescents, while studies on forecasting NSSI at the family level are still limited. In addition to regression methods, machine learning (ML) techniques have been recommended to improve the accuracy of family-level risk prediction for NSSI.

METHODS

Using a dataset of 7967 students and their primary caregivers from a cross-sectional study, logistic regression model and random forest model were used to test the forecasting accuracy of NSSI predictions at the family level. Cross-validation was used to assess model prediction performance, including the area under the receiver operator curve (AUC), precision, Brier score, accuracy, sensitivity, specificity, positive predictive value and negative predictive value.

RESULTS

The top three important family-related predictors within the random forest algorithm included family function (importance:42.66), family conflict (importance:42.18), and parental depression (importance:27.21). The most significant family-related risk predictors and protective predictors identified by the logistic regression model were family history of mental illness (OR:2.25) and help-seeking behaviors of mental distress from parents (OR:0.65), respectively. The AUCs of the two models, logistic regression and random forest, were 0.852 and 0.835, respectively.

LIMITATIONS

The key limitation is that this cross-sectional survey only enabled the authors to examine predictors that were considered to be proximal rather than distal.

CONCLUSIONS

These findings highlight the significance of family-related factors in forecasting NSSI in adolescents. Combining both conventional statistical methods and ML methods to improve risk assessment of NSSI at the family level deserves attention.

摘要

背景

青少年非自杀性自伤(NSSI)是一个重大的公共卫生问题。家庭因素与青少年NSSI显著相关,而在家庭层面预测NSSI的研究仍然有限。除了回归方法外,机器学习(ML)技术也被推荐用于提高家庭层面NSSI风险预测的准确性。

方法

使用一项横断面研究中7967名学生及其主要照顾者的数据集,采用逻辑回归模型和随机森林模型来检验家庭层面NSSI预测的预测准确性。交叉验证用于评估模型预测性能,包括受试者工作特征曲线下面积(AUC)、精度、布里尔分数、准确性、敏感性、特异性、阳性预测值和阴性预测值。

结果

随机森林算法中最重要的三个与家庭相关的预测因素包括家庭功能(重要性:42.66)、家庭冲突(重要性:42.18)和父母抑郁(重要性:27.21)。逻辑回归模型确定的最显著的与家庭相关的风险预测因素和保护预测因素分别是精神疾病家族史(OR:2.25)和父母对精神痛苦的求助行为(OR:0.65)。逻辑回归和随机森林这两个模型的AUC分别为0.852和0.835。

局限性

关键局限性在于这项横断面调查仅使作者能够检查被认为是近端而非远端的预测因素。

结论

这些发现突出了家庭相关因素在预测青少年NSSI中的重要性。结合传统统计方法和ML方法以改善家庭层面NSSI的风险评估值得关注。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验