Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Radiology, Shanghai Geriatric Medical Center, Shanghai, China.
Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China.
Clin Radiol. 2024 May;79(5):e725-e735. doi: 10.1016/j.crad.2024.01.031. Epub 2024 Feb 9.
To investigate whether the Vesical Imaging-Reporting and Data System (VI-RADS) could be used to develop a new non-invasive preoperative grade-prediction system to partially predict high-grade bladder cancer (HG-BC).
The present study enrolled 89 primary BC patients prospectively from March 2022 to June 2023. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of VI-RADS for predicting HG-BC and muscle-invasive bladder cancer (MIBC) in the entire group. In the low VI-RADS (≤2) group, the decision tree-based method was used to obtain significant predictors and construct the decision-tree model (DT model). The performance of the DT model and low VI-RADS scores for predicting HG-BC was determined using ROC, calibration, and decision curve analyses.
At a cut-off of ≥3, the specificity and positive predictive value of VI-RADS for predicting HG-BC in the entire group was 100%, and the area under the ROC curve (AUC) was 0.697. Among 65 patients with low VI-RADS scores, the DT model showed an AUC of 0.884 in predicting HG-BC compared to 0.506 for low VI-RADS scores. Calibration and decision curve analyses showed that the DT model performed better than the low VI-RADS scores.
Most VI-RADS scores ≥3 correspond to HG-BCs. VI-RADS could be used as a grouping imaging biomarker for a pathological grade-prediction procedure, which in combination with the DT model for low VI-RADS (≤2) populations, would provide a potential preoperative non-invasive method of predicting HG-BC.
探讨膀胱影像报告和数据系统(VI-RADS)是否可用于开发新的非侵入性术前分级预测系统,以部分预测高级别膀胱癌(HG-BC)。
本研究前瞻性纳入 2022 年 3 月至 2023 年 6 月的 89 例原发性膀胱癌患者。通过受试者工作特征(ROC)曲线分析评估 VI-RADS 对整个组 HG-BC 和肌层浸润性膀胱癌(MIBC)的诊断性能。在低 VI-RADS(≤2)组中,采用基于决策树的方法获取显著预测因子并构建决策树模型(DT 模型)。使用 ROC、校准和决策曲线分析确定 DT 模型和低 VI-RADS 评分预测 HG-BC 的性能。
当截断值≥3 时,VI-RADS 对整个组预测 HG-BC 的特异性和阳性预测值为 100%,ROC 曲线下面积(AUC)为 0.697。在 65 例低 VI-RADS 评分患者中,与低 VI-RADS 评分相比,DT 模型预测 HG-BC 的 AUC 为 0.884。校准和决策曲线分析表明,DT 模型的表现优于低 VI-RADS 评分。
大多数 VI-RADS 评分≥3 对应 HG-BC。VI-RADS 可作为一种分组成像生物标志物用于病理分级预测程序,与低 VI-RADS(≤2)人群的 DT 模型相结合,可为预测 HG-BC 提供一种潜在的术前非侵入性方法。