Suppr超能文献

膀胱影像学报告和数据系统(VI-RADS)作为一种分组成像生物标志物,结合决策树模式,可用于术前预测膀胱癌的病理分级。

Vesical Imaging-Reporting and Data System (VI-RADS) as a grouping imaging biomarker combined with a decision-tree mode to preoperatively predict the pathological grade of bladder cancer.

机构信息

Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Radiology, Shanghai Geriatric Medical Center, Shanghai, China.

Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

Clin Radiol. 2024 May;79(5):e725-e735. doi: 10.1016/j.crad.2024.01.031. Epub 2024 Feb 9.

Abstract

AIM

To investigate whether the Vesical Imaging-Reporting and Data System (VI-RADS) could be used to develop a new non-invasive preoperative grade-prediction system to partially predict high-grade bladder cancer (HG-BC).

MATERIALS AND METHODS

The present study enrolled 89 primary BC patients prospectively from March 2022 to June 2023. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of VI-RADS for predicting HG-BC and muscle-invasive bladder cancer (MIBC) in the entire group. In the low VI-RADS (≤2) group, the decision tree-based method was used to obtain significant predictors and construct the decision-tree model (DT model). The performance of the DT model and low VI-RADS scores for predicting HG-BC was determined using ROC, calibration, and decision curve analyses.

RESULTS

At a cut-off of ≥3, the specificity and positive predictive value of VI-RADS for predicting HG-BC in the entire group was 100%, and the area under the ROC curve (AUC) was 0.697. Among 65 patients with low VI-RADS scores, the DT model showed an AUC of 0.884 in predicting HG-BC compared to 0.506 for low VI-RADS scores. Calibration and decision curve analyses showed that the DT model performed better than the low VI-RADS scores.

CONCLUSION

Most VI-RADS scores ≥3 correspond to HG-BCs. VI-RADS could be used as a grouping imaging biomarker for a pathological grade-prediction procedure, which in combination with the DT model for low VI-RADS (≤2) populations, would provide a potential preoperative non-invasive method of predicting HG-BC.

摘要

目的

探讨膀胱影像报告和数据系统(VI-RADS)是否可用于开发新的非侵入性术前分级预测系统,以部分预测高级别膀胱癌(HG-BC)。

材料与方法

本研究前瞻性纳入 2022 年 3 月至 2023 年 6 月的 89 例原发性膀胱癌患者。通过受试者工作特征(ROC)曲线分析评估 VI-RADS 对整个组 HG-BC 和肌层浸润性膀胱癌(MIBC)的诊断性能。在低 VI-RADS(≤2)组中,采用基于决策树的方法获取显著预测因子并构建决策树模型(DT 模型)。使用 ROC、校准和决策曲线分析确定 DT 模型和低 VI-RADS 评分预测 HG-BC 的性能。

结果

当截断值≥3 时,VI-RADS 对整个组预测 HG-BC 的特异性和阳性预测值为 100%,ROC 曲线下面积(AUC)为 0.697。在 65 例低 VI-RADS 评分患者中,与低 VI-RADS 评分相比,DT 模型预测 HG-BC 的 AUC 为 0.884。校准和决策曲线分析表明,DT 模型的表现优于低 VI-RADS 评分。

结论

大多数 VI-RADS 评分≥3 对应 HG-BC。VI-RADS 可作为一种分组成像生物标志物用于病理分级预测程序,与低 VI-RADS(≤2)人群的 DT 模型相结合,可为预测 HG-BC 提供一种潜在的术前非侵入性方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验