Suppr超能文献

杂交红鹿和粗糙集临床信息检索系统用于乙型肝炎诊断。

A hybridized red deer and rough set clinical information retrieval system for hepatitis B diagnosis.

机构信息

Vellore Institute of Technology, School of Computer Science and Engineering, Vellore, 632014, India.

出版信息

Sci Rep. 2024 Feb 15;14(1):3815. doi: 10.1038/s41598-024-53170-5.

Abstract

Healthcare is a big concern in the current booming population. Many approaches for improving health are imposed, such as early disease identification, treatment, and prevention. Therefore, knowledge acquisition is highly essential at different stages of decision-making. Inferring knowledge from the information system, which necessitates multiple steps for extracting useful information, is one technique to address this problem. Handling uncertainty throughout data analysis is also another challenging task. Computer intelligence is a step forward to this end while selecting characteristics, classification, clustering, and developing clinical information retrieval systems. According to recent studies, swarm optimization is a useful technique for discovering key features while resolving real-world issues. However, it is ineffective in managing uncertainty. Conversely, a rough set helps a decision system generate decision rules. This produces decision rules without any additional information. In order to assess real-world information systems while managing uncertainties, a hybrid strategy that combines a rough set and red deer algorithm is presented in this research. In the red deer optimization algorithm, the suggested method selects the optimal characteristics in terms of the degree of dependence on the rough set. In order to determine the decision rules, further a rough set is used. The efficiency of the suggested model is also contrasted with that of the decision tree algorithm and the conventional rough set. An empirical study on hepatitis disease illustrates the viability of the proposed research as compared to the decision tree and crisp rough set. The proposed hybridization of rough set and red deer algorithm achieves an accuracy of 91.7% accuracy. The acquired accuracy for the decision tree, and rough set methods is 82.9%, and 88.9%, respectively. It suggests that the proposed research is viable.

摘要

在当前人口繁荣的情况下,医疗保健是一个大问题。为了改善健康状况,已经提出了许多方法,例如早期疾病识别、治疗和预防。因此,在决策的不同阶段,知识获取是非常重要的。从信息系统中推断知识需要多个步骤来提取有用的信息,这是解决这个问题的一种技术。在数据分析中处理不确定性也是另一个具有挑战性的任务。计算机智能是朝着这个方向迈出的一步,同时选择特征、分类、聚类和开发临床信息检索系统。根据最近的研究,群体智能是一种在解决实际问题时发现关键特征的有用技术。然而,它在管理不确定性方面效率不高。相反,粗糙集有助于决策系统生成决策规则。这会生成无需任何额外信息的决策规则。为了在管理不确定性的同时评估现实世界的信息系统,本研究提出了一种将粗糙集和红鹿算法相结合的混合策略。在红鹿优化算法中,所提出的方法根据对粗糙集的依赖程度选择最佳特征。为了确定决策规则,进一步使用粗糙集。还将所提出的模型的效率与决策树算法和传统粗糙集进行了对比。一项关于肝炎疾病的实证研究表明,与决策树和刚性粗糙集相比,所提出的研究具有可行性。粗糙集和红鹿算法的混合达到了 91.7%的准确率。决策树和粗糙集方法的准确率分别为 82.9%和 88.9%。这表明所提出的研究是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8c/10869783/059e18d31702/41598_2024_53170_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验