文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用 MuSiCal 进行准确且灵敏的突变特征分析。

Accurate and sensitive mutational signature analysis with MuSiCal.

机构信息

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Genet. 2024 Mar;56(3):541-552. doi: 10.1038/s41588-024-01659-0. Epub 2024 Feb 15.


DOI:10.1038/s41588-024-01659-0
PMID:38361034
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10937379/
Abstract

Mutational signature analysis is a recent computational approach for interpreting somatic mutations in the genome. Its application to cancer data has enhanced our understanding of mutational forces driving tumorigenesis and demonstrated its potential to inform prognosis and treatment decisions. However, methodological challenges remain for discovering new signatures and assigning proper weights to existing signatures, thereby hindering broader clinical applications. Here we present Mutational Signature Calculator (MuSiCal), a rigorous analytical framework with algorithms that solve major problems in the standard workflow. Our simulation studies demonstrate that MuSiCal outperforms state-of-the-art algorithms for both signature discovery and assignment. By reanalyzing more than 2,700 cancer genomes, we provide an improved catalog of signatures and their assignments, discover nine indel signatures absent in the current catalog, resolve long-standing issues with the ambiguous 'flat' signatures and give insights into signatures with unknown etiologies. We expect MuSiCal and the improved catalog to be a step towards establishing best practices for mutational signature analysis.

摘要

突变特征分析是一种用于解释基因组中体细胞突变的新兴计算方法。它在癌症数据中的应用增强了我们对驱动肿瘤发生的突变力量的理解,并展示了其在预后和治疗决策方面的应用潜力。然而,发现新特征并为现有特征分配适当权重仍然存在方法学挑战,从而阻碍了更广泛的临床应用。在这里,我们介绍了突变特征计算器(MuSiCal),这是一个严格的分析框架,具有解决标准工作流程中主要问题的算法。我们的模拟研究表明,MuSiCal 在特征发现和分配方面均优于最先进的算法。通过重新分析超过 2700 个癌症基因组,我们提供了一个经过改进的特征及其分配目录,发现了当前目录中不存在的九个插入缺失特征,解决了长期存在的模糊“平坦”特征问题,并深入了解了具有未知病因的特征。我们期望 MuSiCal 和经过改进的目录能够朝着建立突变特征分析最佳实践迈出一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/82dbe658c8cd/41588_2024_1659_Fig17_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/460de3f60896/41588_2024_1659_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/46b1ed39e093/41588_2024_1659_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/d4e54846c24d/41588_2024_1659_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/9072a36c4c4b/41588_2024_1659_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/63a52ab74d72/41588_2024_1659_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/6bc3a1ede83c/41588_2024_1659_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/ef92416de5e6/41588_2024_1659_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/93051ab4e1b1/41588_2024_1659_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/0e90fa4dced1/41588_2024_1659_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/c28ddb5246d6/41588_2024_1659_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/0dbb9acc410e/41588_2024_1659_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/8ea618bc2d56/41588_2024_1659_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/cf6e4254b634/41588_2024_1659_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/6711f7e97fde/41588_2024_1659_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/1d49e418fec2/41588_2024_1659_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/b8c590013557/41588_2024_1659_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/82dbe658c8cd/41588_2024_1659_Fig17_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/460de3f60896/41588_2024_1659_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/46b1ed39e093/41588_2024_1659_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/d4e54846c24d/41588_2024_1659_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/9072a36c4c4b/41588_2024_1659_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/63a52ab74d72/41588_2024_1659_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/6bc3a1ede83c/41588_2024_1659_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/ef92416de5e6/41588_2024_1659_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/93051ab4e1b1/41588_2024_1659_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/0e90fa4dced1/41588_2024_1659_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/c28ddb5246d6/41588_2024_1659_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/0dbb9acc410e/41588_2024_1659_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/8ea618bc2d56/41588_2024_1659_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/cf6e4254b634/41588_2024_1659_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/6711f7e97fde/41588_2024_1659_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/1d49e418fec2/41588_2024_1659_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/b8c590013557/41588_2024_1659_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7d9/10937379/82dbe658c8cd/41588_2024_1659_Fig17_ESM.jpg

相似文献

[1]
Accurate and sensitive mutational signature analysis with MuSiCal.

Nat Genet. 2024-3

[2]
Modeling clinical and molecular covariates of mutational process activity in cancer.

Bioinformatics. 2019-7-15

[3]
Assigning mutational signatures to individual samples and individual somatic mutations with SigProfilerAssignment.

Bioinformatics. 2023-12-1

[4]
A practical framework and online tool for mutational signature analyses show inter-tissue variation and driver dependencies.

Nat Cancer. 2020-2

[5]
De novo mutational signature discovery in tumor genomes using SparseSignatures.

PLoS Comput Biol. 2021-6

[6]
Analysis of mutational signatures with yet another package for signature analysis.

Genes Chromosomes Cancer. 2021-5

[7]
Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network.

Oncogene. 2020-6-11

[8]
Mutational burden and signatures in 4000 Japanese cancers provide insights into tumorigenesis and response to therapy.

Cancer Sci. 2019-6-24

[9]
Patterns and processes of somatic mutations in nine major cancers.

BMC Med Genomics. 2014-2-19

[10]
Mutational signatures: emerging concepts, caveats and clinical applications.

Nat Rev Cancer. 2021-10

引用本文的文献

[1]
Paired plus-minus sequencing is an ultra-high throughput and accurate method for dual strand sequencing of DNA molecules.

bioRxiv. 2025-8-14

[2]
Joint inference of mutational signatures from indels and single-nucleotide substitutions reveals prognostic impact of DNA repair deficiencies.

Genome Med. 2025-7-3

[3]
A Thiopurine-like Mutagenic Process Defines TGCT Subtypes.

bioRxiv. 2025-6-12

[4]
Explainable AI Model Reveals Informative Mutational Signatures for Cancer-Type Classification.

Cancers (Basel). 2025-5-22

[5]
A macrophage-predominant immunosuppressive microenvironment and therapeutic vulnerabilities in advanced salivary gland cancer.

Nat Commun. 2025-6-12

[6]
Nonhypermutator Cancers Access Driver Mutations Through Reversals in Germline Mutational Bias.

Mol Biol Evol. 2025-4-30

[7]
Error-corrected flow-based sequencing at whole-genome scale and its application to circulating cell-free DNA profiling.

Nat Methods. 2025-5

[8]
A redefined InDel taxonomy provides insights into mutational signatures.

Nat Genet. 2025-5

[9]
Inferring active mutational processes in cancer using single cell sequencing and evolutionary constraints.

bioRxiv. 2025-2-27

[10]
Benchmarking 13 tools for mutational signature attribution, including a new and improved algorithm.

Brief Bioinform. 2024-11-22

本文引用的文献

[1]
Mutation-Attention (MuAt): deep representation learning of somatic mutations for tumour typing and subtyping.

Genome Med. 2023-7-7

[2]
Uncovering novel mutational signatures by extraction with SigProfilerExtractor.

Cell Genom. 2022-11-9

[3]
Single-cell genome sequencing of human neurons identifies somatic point mutation and indel enrichment in regulatory elements.

Nat Genet. 2022-10

[4]
Substitution mutational signatures in whole-genome-sequenced cancers in the UK population.

Science. 2022-4-22

[5]
Starfish infers signatures of complex genomic rearrangements across human cancers.

Nat Cancer. 2022-10

[6]
Signatures of copy number alterations in human cancer.

Nature. 2022-6

[7]
Signatures of TOP1 transcription-associated mutagenesis in cancer and germline.

Nature. 2022-2

[8]
Recurrent mutations in topoisomerase IIα cause a previously undescribed mutator phenotype in human cancers.

Proc Natl Acad Sci U S A. 2022-1-25

[9]
Computational analysis of cancer genome sequencing data.

Nat Rev Genet. 2022-5

[10]
Therapeutic and prognostic insights from the analysis of cancer mutational signatures.

Trends Genet. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索