Suppr超能文献

癌症基因组测序数据的计算分析。

Computational analysis of cancer genome sequencing data.

机构信息

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Rev Genet. 2022 May;23(5):298-314. doi: 10.1038/s41576-021-00431-y. Epub 2021 Dec 8.

Abstract

Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future.

摘要

从癌症基因组测序数据中提取有生物学意义的信息需要使用严格的计算方法全面识别体细胞改变。随着测序数据量和复杂度的增加,用于分析它们的工具的数量也在增加。在这里,我们描述了癌症基因组生物信息学分析的主要步骤,回顾了关键算法的发展,并强调了流行的工具和新兴技术。这些工具包括识别癌症基因组中点突变、拷贝数改变、结构变异和突变特征的工具。我们还讨论了实验设计中的问题、测序方式的优缺点以及未来的方法学挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验