Suppr超能文献

用黑色素瘤解释皮肤科人工智能的基本原理

Basic principles of artificial intelligence in dermatology explained using melanoma.

机构信息

Department of Dermatology, University hospital Tübingen, Tübingen, Germany.

University of Stuttgart, Germany.

出版信息

J Dtsch Dermatol Ges. 2024 Mar;22(3):339-347. doi: 10.1111/ddg.15322. Epub 2024 Feb 15.

Abstract

The use of artificial intelligence (AI) continues to establish itself in the most diverse areas of medicine at an increasingly fast pace. Nevertheless, many healthcare professionals lack the basic technical understanding of how this technology works, which severely limits its application in clinical settings and research. Thus, we would like to discuss the functioning and classification of AI using melanoma as an example in this review to build an understanding of the technology behind AI. For this purpose, elaborate illustrations are used that quickly reveal the technology involved. Previous reviews tend to focus on the potential applications of AI, thereby missing the opportunity to develop a deeper understanding of the subject matter that is so important for clinical application. Malignant melanoma has become a significant burden for healthcare systems. If discovered early, a better prognosis can be expected, which is why skin cancer screening has become increasingly popular and is supported by health insurance. The number of experts remains finite, reducing their availability and leading to longer waiting times. Therefore, innovative ideas need to be implemented to provide the necessary care. Thus, machine learning offers the ability to recognize melanomas from images at a level comparable to experienced dermatologists under optimized conditions.

摘要

人工智能(AI)的应用在不断地以越来越快的速度在医学的各个领域确立自己的地位。然而,许多医疗保健专业人员缺乏对这项技术如何运作的基本技术理解,这严重限制了它在临床环境和研究中的应用。因此,我们希望在本次综述中使用黑色素瘤为例来讨论 AI 的功能和分类,以建立对 AI 背后技术的理解。为此,我们使用了详细的插图,这些插图可以快速揭示所涉及的技术。以前的评论往往侧重于 AI 的潜在应用,从而错失了深入了解这一对临床应用非常重要的主题的机会。恶性黑色素瘤已经成为医疗系统的一个重大负担。如果早期发现,预后会更好,这就是为什么皮肤癌筛查越来越受欢迎,并得到健康保险的支持。专家的数量仍然有限,这降低了他们的可用性,并导致更长的等待时间。因此,需要实施创新理念来提供必要的护理。因此,机器学习提供了在优化条件下从图像中识别黑色素瘤的能力,其水平可与经验丰富的皮肤科医生相媲美。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验