文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在黑色素瘤诊断中的作用。

The Role of Artificial Intelligence in the Diagnosis of Melanoma.

作者信息

Kalidindi Sadhana

机构信息

Clinical Research, Apollo Radiology International Academy, Hyderabad, IND.

出版信息

Cureus. 2024 Sep 20;16(9):e69818. doi: 10.7759/cureus.69818. eCollection 2024 Sep.


DOI:10.7759/cureus.69818
PMID:39308840
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11415605/
Abstract

The incidence of melanoma, the most aggressive form of skin cancer, continues to rise globally, particularly among fair-skinned populations (type I and II). Early detection is crucial for improving patient outcomes, and recent advancements in artificial intelligence (AI) have shown promise in enhancing the accuracy and efficiency of melanoma diagnosis and management. This review examines the role of AI in skin lesion diagnostics, highlighting two main approaches: machine learning, particularly convolutional neural networks (CNNs), and expert systems. AI techniques have demonstrated high accuracy in classifying dermoscopic images, often matching or surpassing dermatologists' performance. Integrating AI into dermatology has improved tasks, such as lesion classification, segmentation, and risk prediction, facilitating earlier and more accurate interventions. Despite these advancements, challenges remain, including biases in training data, interpretability issues, and integration of AI into clinical workflows. Ensuring diverse data representation and maintaining high standards of image quality are essential for reliable AI performance. Future directions involve the development of more sophisticated models, such as vision-language and multimodal models, and federated learning to address data privacy and generalizability concerns. Continuous validation and ethical integration of AI into clinical practice are vital for realizing its full potential for improving melanoma diagnosis and patient care.

摘要

黑色素瘤是最具侵袭性的皮肤癌形式,其发病率在全球范围内持续上升,在浅肤色人群(I型和II型)中尤为明显。早期检测对于改善患者预后至关重要,人工智能(AI)的最新进展在提高黑色素瘤诊断和管理的准确性和效率方面显示出了前景。这篇综述探讨了AI在皮肤病变诊断中的作用,重点介绍了两种主要方法:机器学习,特别是卷积神经网络(CNN),以及专家系统。AI技术在对皮肤镜图像进行分类时已显示出高准确性,常常能与皮肤科医生的表现相匹配或超越。将AI整合到皮肤科已改善了诸如病变分类、分割和风险预测等任务,有助于更早、更准确地进行干预。尽管有这些进展,但挑战依然存在,包括训练数据中的偏差、可解释性问题以及将AI整合到临床工作流程中。确保多样化的数据表示并保持高标准的图像质量对于可靠的AI性能至关重要。未来的方向包括开发更复杂的模型,如视觉语言和多模态模型,以及联邦学习以解决数据隐私和泛化问题。持续验证并将AI合乎伦理地整合到临床实践中对于实现其改善黑色素瘤诊断和患者护理的全部潜力至关重要。

相似文献

[1]
The Role of Artificial Intelligence in the Diagnosis of Melanoma.

Cureus. 2024-9-20

[2]
Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study.

J Med Internet Res. 2020-9-11

[3]
Artificial Intelligence in Dermatology: Challenges and Perspectives.

Dermatol Ther (Heidelb). 2022-12

[4]
Artificial Intelligence (AI)-Enhanced Detection of Diabetic Retinopathy From Fundus Images: The Current Landscape and Future Directions.

Cureus. 2024-8-26

[5]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[6]
Analysis of Artificial Intelligence-Based Approaches Applied to Non-Invasive Imaging for Early Detection of Melanoma: A Systematic Review.

Cancers (Basel). 2023-9-23

[7]
Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge.

Lancet Digit Health. 2022-5

[8]
Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts.

Eur J Cancer. 2021-10

[9]
Role of artificial intelligence, machine learning and deep learning models in corneal disorders - A narrative review.

J Fr Ophtalmol. 2024-9

[10]
Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review.

Surv Ophthalmol. 2024

引用本文的文献

[1]
Integrating Radiogenomics and Machine Learning in Musculoskeletal Oncology Care.

Diagnostics (Basel). 2025-5-29

[2]
Clinical Approaches for the Management of Skin Cancer: A Review of Current Progress in Diagnosis, Treatment, and Prognosis for Patients with Melanoma.

Cancers (Basel). 2025-2-19

本文引用的文献

[1]
Can Artificial Intelligence "Hold" a Dermoscope?-The Evaluation of an Artificial Intelligence Chatbot to Translate the Dermoscopic Language.

Diagnostics (Basel). 2024-5-31

[2]
Basic principles of artificial intelligence in dermatology explained using melanoma.

J Dtsch Dermatol Ges. 2024-3

[3]
Principles, applications, and future of artificial intelligence in dermatology.

Front Med (Lausanne). 2023-10-12

[4]
Artificial Intelligence and Radiomics: Clinical Applications for Patients with Advanced Melanoma Treated with Immunotherapy.

Diagnostics (Basel). 2023-9-27

[5]
The shaky foundations of large language models and foundation models for electronic health records.

NPJ Digit Med. 2023-7-29

[6]
Artificial intelligence and clinical decision support: clinicians' perspectives on trust, trustworthiness, and liability.

Med Law Rev. 2023-11-27

[7]
Ethics of large language models in medicine and medical research.

Lancet Digit Health. 2023-6

[8]
Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine.

N Engl J Med. 2023-3-30

[9]
Artificial Intelligence and Machine Learning in Clinical Medicine, 2023.

N Engl J Med. 2023-3-30

[10]
Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations.

PLoS One. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索