Johansen Christian M, Peters Jonas C
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
J Am Chem Soc. 2024 Feb 28;146(8):5343-5354. doi: 10.1021/jacs.3c12395. Epub 2024 Feb 15.
Nitrogenase enzymes catalyze nitrogen reduction (NR) to ammonia and also the reduction of non-native substrates, including the 7H/6e reduction of cyanide to CH and NH. CN and N are isoelectronic, and it is hence fascinating to compare the mechanisms of synthetic Fe catalysts capable of both CN and N reduction. Here, we describe the catalytic reduction of CN to NH and CH by a highly selective (P)Fe(CN) catalyst (P represents a tris(phosphine)silyl ligand). Catalysis is driven in the presence of excess acid ([PhNH]OTf) and reductant ((CH)Cr), with turnover as high as 73 demonstrated. This catalyst system is also modestly competent for NR and structurally related to other tris(phosphine)Fe-based NR catalysts. The choice of catalyst and reductant is important to observe high yields. Mechanistic studies elucidate several intermediates of CN reduction, including iron isocyanides (PFeCNH) and terminal iron aminocarbynes (PFeCNH). Aminocarbynes are isoelectronic to iron hydrazidos (Fe═N-NH), which have been invoked as selectivity-determining intermediates of NR (NH versus NH products). For the present CN reduction catalysis, reduction of aminocarbyne PFeCNH is proposed to be rate but not selectivity contributing. Instead, by comparison with the reactivity of a methylated aminocarbyne analogue (PFeCNMe), and associated computational studies, formation of a Fischer carbene (PFeC(H)(NH)) intermediate that is on path for either CH and NH (6 e) or CHNH (4 e) products is proposed. From this carbene intermediate, pathways to the observed CH and NH products (distinct from CHNH formation) are considered to compare and contrast the (likely) mechanism/s of CN and N reduction.
固氮酶催化将氮还原为氨,同时也能还原非天然底物,包括将氰化物7H/6e还原为甲烷和氨。氰根离子(CN⁻)和氮气(N₂)是等电子体,因此比较能够同时还原CN⁻和N₂的合成铁催化剂的作用机制很有意思。在此,我们描述了一种高选择性的(P)Fe(CN)催化剂(P代表三(膦)硅烷基配体)将CN⁻催化还原为氨和甲烷。在过量酸([PhNH₃]OTf)和还原剂((CH₃)₂Cr)存在的情况下驱动催化反应,展示出高达73的周转率。该催化剂体系对氮还原也有一定活性,并且在结构上与其他三(膦)铁基氮还原催化剂相关。催化剂和还原剂的选择对于获得高产率很重要。机理研究阐明了氰根离子还原的几种中间体,包括异氰基铁(PFeCNH)和末端氨基卡宾铁(PFeCNH)。氨基卡宾与肼基铁(Fe═N-NH)是等电子体,后者被认为是氮还原(生成NH₃与NH₂OH产物)中决定选择性的中间体。对于目前的氰根离子还原催化反应,氨基卡宾PFeCNH的还原被认为是影响反应速率但不影响选择性。相反,通过与甲基化氨基卡宾类似物(PFeCNMe)的反应活性比较以及相关的计算研究,提出形成了一种费舍尔卡宾(PFeC(H)(NH))中间体,该中间体可生成甲烷和氨(释放6个电子)或甲胺(释放4个电子)产物。从这个卡宾中间体出发,考虑生成所观察到的甲烷和氨产物(不同于甲胺的形成)的途径,以比较和对比氰根离子和氮气还原(可能)的机制。