Suppr超能文献

阿尔茨海默病中的监督式深度树模型

SUPERVISED DEEP TREE IN ALZHEIMER'S DISEASE.

作者信息

Yu Xiaowei, Zhang Lu, Lyu Yanjun, Liu Tianming, Zhu Dajiang

机构信息

Computer Science and Engineering, University of Texas at Arlington, TX, USA.

Computer Science, The University of Georgia, Athens, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230742. Epub 2023 Sep 1.

Abstract

As a progressive neurodegenerative disorder, the pathological changes of Alzheimer's disease (AD) might begin as much as two decades before the manifestation of clinical symptoms. Since the nature of the irreversible pathology of AD, early diagnosis provides a more tractable way for disease intervention and treatment. Therefore, numerous approaches have been developed for early diagnostic purposes. Although several important biomarkers have been established, most of the existing methods show limitations in describing the continuum of AD progression. However, understanding this continuous development is essential to understand the intrinsic progression mechanism of AD. In this work, we proposed a supervised deep tree model (SDTree) to integrate AD progression and individual prediction. The proposed SDTree method models the progression of AD as a tree embedded in a latent space using nonlinear reversed graph embedding. In this way, the continuum of AD progression is encoded into the locations on the tree structure. The learned tree structure can not only represent the continuum of AD but make predictions for new subjects. We evaluated our method on the classification task and achieved promising results on Alzheimer's Disease Neuroimaging Initiative dataset.

摘要

作为一种进行性神经退行性疾病,阿尔茨海默病(AD)的病理变化可能在临床症状出现前二十年就已开始。由于AD不可逆病理的性质,早期诊断为疾病干预和治疗提供了更易于处理的方法。因此,已经开发了许多用于早期诊断目的的方法。尽管已经建立了几种重要的生物标志物,但大多数现有方法在描述AD进展的连续性方面存在局限性。然而,理解这种连续发展对于理解AD的内在进展机制至关重要。在这项工作中,我们提出了一种监督深度树模型(SDTree)来整合AD进展和个体预测。所提出的SDTree方法使用非线性反向图嵌入将AD进展建模为嵌入在潜在空间中的树。通过这种方式,AD进展的连续性被编码到树结构上的位置。所学习的树结构不仅可以表示AD的连续性,还可以对新受试者进行预测。我们在分类任务上评估了我们的方法,并在阿尔茨海默病神经影像倡议数据集上取得了有希望的结果。

相似文献

1
SUPERVISED DEEP TREE IN ALZHEIMER'S DISEASE.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230742. Epub 2023 Sep 1.
2
Disease2Vec: Encoding Alzheimer's progression via disease embedding tree.
Pharmacol Res. 2024 Jan;199:107038. doi: 10.1016/j.phrs.2023.107038. Epub 2023 Dec 10.
4
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
Neuroimage. 2020 Mar;208:116459. doi: 10.1016/j.neuroimage.2019.116459. Epub 2019 Dec 16.
6
Identifying informative imaging biomarkers via tree structured sparse learning for AD diagnosis.
Neuroinformatics. 2014 Jul;12(3):381-94. doi: 10.1007/s12021-013-9218-x.
7
c-Diadem: a constrained dual-input deep learning model to identify novel biomarkers in Alzheimer's disease.
BMC Med Genomics. 2023 Oct 13;16(Suppl 2):244. doi: 10.1186/s12920-023-01675-9.
8
Explainable Vision Transformer with Self-Supervised Learning to Predict Alzheimer's Disease Progression Using 18F-FDG PET.
Bioengineering (Basel). 2023 Oct 20;10(10):1225. doi: 10.3390/bioengineering10101225.
9
Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials.
Alzheimers Dement. 2017 Apr;13(4):e1-e85. doi: 10.1016/j.jalz.2016.11.007. Epub 2017 Mar 22.

本文引用的文献

1
Longitudinal Infant Functional Connectivity Prediction via Conditional Intensive Triplet Network.
Med Image Comput Comput Assist Interv. 2022 Sep;13438:255-264. doi: 10.1007/978-3-031-16452-1_25. Epub 2022 Sep 16.
2
Deep Fusion of Brain Structure-Function in Mild Cognitive Impairment.
Med Image Anal. 2021 Aug;72:102082. doi: 10.1016/j.media.2021.102082. Epub 2021 Apr 23.
3
Alzheimer's disease.
Lancet. 2021 Apr 24;397(10284):1577-1590. doi: 10.1016/S0140-6736(20)32205-4. Epub 2021 Mar 2.
4
Probabilistic Dimensionality Reduction via Structure Learning.
IEEE Trans Pattern Anal Mach Intell. 2019 Jan;41(1):205-219. doi: 10.1109/TPAMI.2017.2785402. Epub 2017 Dec 19.
5
Data-driven models of dominantly-inherited Alzheimer's disease progression.
Brain. 2018 May 1;141(5):1529-1544. doi: 10.1093/brain/awy050.
6
The clinical use of structural MRI in Alzheimer disease.
Nat Rev Neurol. 2010 Feb;6(2):67-77. doi: 10.1038/nrneurol.2009.215.
7
Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade.
Lancet Neurol. 2010 Jan;9(1):119-28. doi: 10.1016/S1474-4422(09)70299-6.
9
What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia?
Neurology. 2007 Aug 28;69(9):871-7. doi: 10.1212/01.wnl.0000269790.05105.16.
10
Imaging beta-amyloid burden in aging and dementia.
Neurology. 2007 May 15;68(20):1718-25. doi: 10.1212/01.wnl.0000261919.22630.ea.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验