Suppr超能文献

通过结构学习实现概率降维

Probabilistic Dimensionality Reduction via Structure Learning.

作者信息

Wang Li, Mao Qi

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Jan;41(1):205-219. doi: 10.1109/TPAMI.2017.2785402. Epub 2017 Dec 19.

Abstract

We propose an alternative probabilistic dimensionality reduction framework that can naturally integrate the generative model and the locality information of data. Based on this framework, we present a new model, which is able to learn a set of embedding points in a low-dimensional space by retaining the inherent structure from high-dimensional data. The objective function of this new model can be equivalently interpreted as two coupled learning problems, i.e., structure learning and the learning of projection matrix. Inspired by this interesting interpretation, we propose another model, which finds a set of embedding points that can directly form an explicit graph structure. We proved that the model by learning explicit graphs generalizes the reversed graph embedding method, but leads to a natural interpretation from Bayesian perspective. This can greatly facilitate data visualization and scientific discovery in downstream analysis. Extensive experiments are performed that demonstrate that the proposed framework is able to retain the inherent structure of datasets and achieve competitive quantitative results in terms of various performance evaluation criteria.

摘要

我们提出了一种替代性的概率降维框架,该框架能够自然地整合生成模型和数据的局部性信息。基于此框架,我们提出了一种新模型,它能够通过保留高维数据的固有结构在低维空间中学习一组嵌入点。这个新模型的目标函数可以等效地解释为两个耦合的学习问题,即结构学习和投影矩阵学习。受此有趣解释的启发,我们提出了另一种模型,该模型找到一组能够直接形成显式图结构的嵌入点。我们证明,通过学习显式图的模型推广了反向图嵌入方法,但从贝叶斯角度给出了一种自然解释。这可以极大地促进下游分析中的数据可视化和科学发现。进行了大量实验,结果表明所提出的框架能够保留数据集的固有结构,并在各种性能评估标准方面取得具有竞争力的定量结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验