Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands.
FEBS J. 2024 Jul;291(13):2811-2835. doi: 10.1111/febs.17083. Epub 2024 Feb 16.
Neuronal differentiation is regulated by nerve growth factor (NGF) and other neurotrophins. We explored the impact of NGF on mitochondrial dynamics and metabolism through time-lapse imaging, metabolomics profiling, and computer modeling studies. We show that NGF may direct differentiation by stimulating fission, thereby causing selective mitochondrial network fragmentation and mitophagy, ultimately leading to increased mitochondrial quality and respiration. Then, we reconstructed the dynamic fusion-fission-mitophagy cycling of mitochondria in a computer model, integrating these processes into a single network mechanism. Both the computational model and the simulations are able to reproduce the proposed mechanism in terms of mitochondrial dynamics, levels of reactive oxygen species (ROS), mitophagy, and mitochondrial quality, thus providing a computational tool for the interpretation of the experimental data and for future studies aiming to detail further the action of NGF on mitochondrial processes. We also show that changes in these mitochondrial processes are intertwined with a metabolic function of NGF in differentiation: NGF directs a profound metabolic rearrangement involving glycolysis, TCA cycle, and the pentose phosphate pathway, altering the redox balance. This metabolic rewiring may ensure: (a) supply of both energy and building blocks for the anabolic processes needed for morphological reorganization, as well as (b) redox homeostasis.
神经元分化受神经生长因子 (NGF) 和其他神经营养因子调控。我们通过延时成像、代谢组学分析和计算机建模研究探索了 NGF 对线粒体动力学和代谢的影响。结果表明,NGF 可能通过刺激分裂来指导分化,从而导致选择性的线粒体网络碎片化和线粒体自噬,最终导致线粒体质量和呼吸增加。然后,我们在计算机模型中重建了线粒体的动态融合-分裂-线粒体自噬循环,将这些过程整合到一个单一的网络机制中。该计算模型及其模拟都能够在线粒体动力学、活性氧 (ROS) 水平、线粒体自噬和线粒体质量方面再现所提出的机制,从而为解释实验数据和未来的研究提供了一种计算工具,以进一步详细了解 NGF 对线粒体过程的作用。我们还表明,这些线粒体过程的变化与 NGF 在分化中的代谢功能交织在一起:NGF 指导涉及糖酵解、三羧酸循环和磷酸戊糖途径的深刻代谢重排,改变氧化还原平衡。这种代谢重排可以确保:(a) 为形态重组所需的合成代谢过程提供能量和构建块,以及 (b) 氧化还原平衡。
J Hematol Oncol. 2025-8-1
Antioxidants (Basel). 2025-3-21
Front Pharmacol. 2025-3-26