Bach Svitlana V, Bauman Allison J, Hosein Darya, Tuscher Jennifer J, Ianov Lara, Greathouse Kelsey M, Henderson Benjamin W, Herskowitz Jeremy H, Martinowich Keri, Day Jeremy J
Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA.
The Lieber Institute for Brain Development, Baltimore, Maryland, USA.
Hippocampus. 2024 May;34(5):218-229. doi: 10.1002/hipo.23600. Epub 2024 Feb 16.
Brain-derived neurotrophic factor (Bdnf) plays a critical role in brain development, dendritic growth, synaptic plasticity, as well as learning and memory. The rodent Bdnf gene contains nine 5' non-coding exons (I-IXa), which are spliced to a common 3' coding exon (IX). Transcription of individual Bdnf variants, which all encode the same BDNF protein, is initiated at unique promoters upstream of each non-coding exon, enabling precise spatiotemporal and activity-dependent regulation of Bdnf expression. Although prior evidence suggests that Bdnf transcripts containing exon I (Bdnf I) or exon IV (Bdnf IV) are uniquely regulated by neuronal activity, the functional significance of different Bdnf transcript variants remains unclear. To investigate functional roles of activity-dependent Bdnf I and IV transcripts, we used a CRISPR activation system in which catalytically dead Cas9 fused to a transcriptional activator (VPR) is targeted to individual Bdnf promoters with single guide RNAs, resulting in transcript-specific Bdnf upregulation. Bdnf I upregulation is associated with gene expression changes linked to dendritic growth, while Bdnf IV upregulation is associated with genes that regulate protein catabolism. Upregulation of Bdnf I, but not Bdnf IV, increased mushroom spine density, volume, length, and head diameter, and also produced more complex dendritic arbors in cultured rat hippocampal neurons. In contrast, upregulation of Bdnf IV, but not Bdnf I, in the rat hippocampus attenuated contextual fear expression. Our data suggest that while Bdnf I and IV are both activity-dependent, BDNF produced from these promoters may serve unique cellular, synaptic, and behavioral functions.
脑源性神经营养因子(Bdnf)在大脑发育、树突生长、突触可塑性以及学习和记忆中起着关键作用。啮齿动物的Bdnf基因包含九个5'非编码外显子(I - IXa),它们被剪接到一个共同的3'编码外显子(IX)。各个Bdnf变体(均编码相同的BDNF蛋白)的转录在每个非编码外显子上游的独特启动子处起始,从而实现对Bdnf表达的精确时空和活性依赖性调节。尽管先前的证据表明,包含外显子I(Bdnf I)或外显子IV(Bdnf IV)的Bdnf转录本受神经元活动的独特调节,但不同Bdnf转录本变体的功能意义仍不清楚。为了研究活性依赖性Bdnf I和IV转录本的功能作用,我们使用了一种CRISPR激活系统,其中与转录激活因子(VPR)融合的催化失活Cas9通过单向导RNA靶向各个Bdnf启动子,导致转录本特异性的Bdnf上调。Bdnf I的上调与与树突生长相关的基因表达变化有关,而Bdnf IV的上调与调节蛋白质分解代谢的基因有关。Bdnf I而非Bdnf IV的上调增加了培养的大鼠海马神经元中蘑菇状棘突的密度、体积、长度和头部直径,并且还产生了更复杂的树突分支。相反,大鼠海马中Bdnf IV而非Bdnf I的上调减弱了情境恐惧表达。我们的数据表明,虽然Bdnf I和IV都是活性依赖性的,但由这些启动子产生的BDNF可能具有独特的细胞、突触和行为功能。