Suppr超能文献

基于 MRI 的病变质量评分评估颈椎后纵韧带骨化。

MRI-based lesion quality score assessing ossification of the posterior longitudinal ligament of the cervical spine.

机构信息

School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Orthopedic Surgery, Shin Kong Wu Huo-Shih Memorial Hospital.

School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan.

出版信息

Spine J. 2024 Jul;24(7):1162-1169. doi: 10.1016/j.spinee.2024.02.007. Epub 2024 Feb 14.

Abstract

BACKGROUND CONTEXT

No method currently exists for MRI-based determination of ossification of the posterior longitudinal ligament (OPLL) of the cervical spine using objective criteria.

PURPOSE

The purpose of this study was to develop an MRI-based score to determine whether a lesion represents a cervical OPLL lesion and to establish the objective diagnostic value.

STUDY DESIGN

Retrospective cohort in a single medical institution.

PATIENT SAMPLE

Thirty-five patients undergoing surgery for OPLL (Group A) and 99 patients undergoing cervical disc arthroplasty for soft disc herniation (Group B) between 2011 and 2020 were retrospectively included. All OPLL lesions on unenhanced MRI scan were correlated with a corresponding CT scan. Demographics were comparable between the two groups.

OUTCOME MEASURES (PHYSIOLOGIC MEASURES): Using unenhanced magnetic resonance imaging (MRI), the T1- and T2- lesion quality (LQ) scores were calculated. Receiver operating characteristic (ROC) analysis was performed to calculate the area-under-the-curve (AUC) of both LQ scores as a predictor of the presence of OPLL. Computed tomography (CT)-based Hounsfield unit (HU) values of OPLL lesions were obtained and compared with both LQ scores. The LQ scores for MRI scanners from different manufacturers were compared using Student's t test to confirm the validity of the LQ score by scanner type.

METHODS

The regions of interest for signal intensity (SI) were defined as the darkest site of the lesion and the cerebrospinal fluid (CSF) at the cerebellomedullary cistern. The T1 and T2 LQ scores were measured as the ratio of the SI at the darkest site of the lesion divided by the SI of the CSF.

RESULTS

The T1 and T2 LQ scores in Group A were significantly lower than those in Group B (p<.001). ROC analysis determined that T1 and T2 LQ scores of 0.46 and 0.07, respectively, could distinguish the presence of OPLL with an accuracy of 0.93 and 0.89, respectively (p<.001). When the T1 LQ score of the lesion is <0.46, a diagnosis of OPLL may be suspected with 100% sensitivity and 92.3% specificity. The HU of the lesion had a moderate negative correlation with the T1 LQ score (r=-0.665, p<.0001). Both LQ scores were unaffected by manufacturer type.

CONCLUSIONS

This study found a correlation between the MRI-based T1 LQ scores and CT-based HU value for identifying OPLL lesions. Additional studies will be needed to validate that the T1 LQ score from the unenhanced MRI scan can identify cervical OPLL.

摘要

背景

目前尚无基于 MRI 并使用客观标准来确定颈椎后纵韧带骨化 (OPLL) 的方法。

目的

本研究旨在开发一种基于 MRI 的评分系统,以确定病变是否为颈椎 OPLL 病变,并建立客观的诊断价值。

研究设计

单机构回顾性队列研究。

患者样本

2011 年至 2020 年间,35 例接受 OPLL 手术的患者(A 组)和 99 例接受颈椎间盘突出症颈椎间盘置换术的患者(B 组)被回顾性纳入。所有未经增强 MRI 扫描的 OPLL 病变均与相应的 CT 扫描相关联。两组患者的人口统计学数据相似。

测量指标(生理指标):使用未增强磁共振成像 (MRI) 计算 T1 和 T2 病变质量 (LQ) 评分。进行受试者工作特征 (ROC) 分析,以计算两种 LQ 评分作为 OPLL 存在的预测指标的曲线下面积 (AUC)。获得 OPLL 病变的 CT 基于体素单位 (HU) 值,并与两种 LQ 评分进行比较。使用学生 t 检验比较不同制造商的 MRI 扫描仪的 LQ 评分,以通过扫描仪类型确认 LQ 评分的有效性。

方法

信号强度 (SI) 的感兴趣区域定义为病变最暗部位和小脑延髓池的脑脊液 (CSF)。测量 T1 和 T2 LQ 评分作为病变最暗部位的 SI 与 CSF 的 SI 之比。

结果

A 组的 T1 和 T2 LQ 评分明显低于 B 组(p<.001)。ROC 分析确定,T1 和 T2 LQ 评分分别为 0.46 和 0.07 时,准确性分别为 0.93 和 0.89,可以区分 OPLL 的存在(p<.001)。当病变的 T1 LQ 评分<0.46 时,诊断为 OPLL 的可能性为 100%,特异性为 92.3%。病变的 HU 值与 T1 LQ 评分呈中度负相关(r=-0.665,p<.0001)。两种 LQ 评分均不受制造商类型的影响。

结论

本研究发现 MRI 基础上的 T1 LQ 评分与 CT 基础上的 HU 值之间存在相关性,可用于识别 OPLL 病变。还需要进一步的研究来验证未经增强 MRI 扫描的 T1 LQ 评分是否可以识别颈椎 OPLL。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验