文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

建模复杂的与年龄相关的眼病。

Modeling complex age-related eye disease.

机构信息

John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.

John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.

出版信息

Prog Retin Eye Res. 2024 May;100:101247. doi: 10.1016/j.preteyeres.2024.101247. Epub 2024 Feb 15.


DOI:10.1016/j.preteyeres.2024.101247
PMID:38365085
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11268458/
Abstract

Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.

摘要

模拟像年龄相关性黄斑变性(AMD)和青光眼这样的复杂眼病具有很大的挑战性,因为这些疾病高度依赖于几十年来发生的与年龄相关的变化,许多相关因素仍然未知。尽管这两种疾病的遗传率都相对较高(>50%),但携带 AMD 或青光眼相关遗传风险变异的大多数个体都不会患上这些疾病。此外,一些环境和生活方式因素也会促进和调节 AMD 和青光眼的发病机制和进展。一些策略在 AMD 和青光眼的小鼠和其他物种中复制了遗传风险变异、病理生物学途径以及环境和生活方式因素的影响。在这篇综述中,我们将主要讨论最常用的小鼠模型,这些模型已经并将继续提高我们对与年龄相关的眼部疾病的病理生物学的理解。目前仍存在一些不确定性,即小型动物模型是否真的可以重现患者的疾病进展和视力丧失,这对它们在测试新型基因或药物疗法时的有用性提出了质疑。我们将详细阐述与小型动物模型相关的一些担忧,包括寿命较短、体型和比例差异、缺乏黄斑和真正的筛板、某些基因的缺失和序列差异以及它们在染色体上位置的差异。由于生物年龄而不是实际年龄可能使机体容易患上青光眼和 AMD,因此像小型啮齿动物这样的衰老速度更快的机体可能会为这些疾病的研究提供更多的机会,使研究更加及时和经济可行。另一方面,由于上述解剖学和生理学特征以及药代动力学和药效学差异,小型动物模型并不适合研究视力丧失的自然进展或新型疗法的疗效和安全性。在这种情况下,我们还将讨论包括较大物种(如非人类灵长类动物和兔子)、患者来源的视网膜类器官以及人供体眼球在内的替代模型的优缺点。

相似文献

[1]
Modeling complex age-related eye disease.

Prog Retin Eye Res. 2024-5

[2]
[Aiming for zero blindness].

Nippon Ganka Gakkai Zasshi. 2015-3

[3]
[Age-related Macular Degeneration in the Japanese].

Nippon Ganka Gakkai Zasshi. 2016-3

[4]
Retinal ultrastructure of murine models of dry age-related macular degeneration (AMD).

Prog Retin Eye Res. 2010-3-3

[5]
Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis.

Ont Health Technol Assess Ser. 2009

[6]
Aging and Vision.

Adv Exp Med Biol. 2016

[7]
Measurement of the Inner Macular Layers for Monitoring of Glaucoma: Confounding Effects of Age-Related Macular Degeneration.

Ophthalmol Glaucoma. 2023

[8]
Features that distinguish age-related macular degeneration from aging.

Exp Eye Res. 2025-5

[9]
Age-related macular degeneration--emerging pathogenetic and therapeutic concepts.

Ann Med. 2006

[10]
Genetic Risk Assessment of Degenerative Eye Disease (GRADE): study protocol of a prospective assessment of polygenic risk scores to predict diagnosis of glaucoma and age-related macular degeneration.

BMC Ophthalmol. 2023-10-24

引用本文的文献

[1]
Functional genomics in age-related macular degeneration: From genetic associations to understanding disease mechanisms.

Exp Eye Res. 2025-5

[2]
Animal Models of Human Disease 2.0.

Int J Mol Sci. 2024-12-23

[3]
Dexamethasone Impairs ATP Production and Mitochondrial Performance in Human Trabecular Meshwork Cells.

Curr Issues Mol Biol. 2024-9-5

[4]
Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine.

MedComm (2020). 2024-9-21

[5]
Mendelian randomization implicates causal association between epigenetic age acceleration and age-related eye diseases or glaucoma endophenotypes.

Clin Epigenetics. 2024-8-14

[6]
The application of retinal organoids in ophthalmic regenerative medicine: A mini-review.

Regen Ther. 2024-6-30

本文引用的文献

[1]
Levels of complement factor H-related 4 protein do not influence susceptibility to age-related macular degeneration or its course of progression.

Nat Commun. 2024-1-10

[2]
Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina.

Nat Commun. 2023-10-13

[3]
Lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) lncRNA differentially regulates gene and protein expression, signaling and morphology of human ocular cells.

Hum Mol Genet. 2023-10-17

[4]
Improved magnetic delivery of cells to the trabecular meshwork in mice.

Exp Eye Res. 2023-9

[5]
PORES OF THE INTERNAL LIMITING MEMBRANE: A Common Finding in Vitreomaculopathies.

Retina. 2023-10-1

[6]
Dexamethasone Induces Senescence-Associated Changes in Trabecular Meshwork Cells by Increasing ROS Levels Via the TGFβ/Smad3-NOX4 Axis.

Cell Transplant. 2023

[7]
Single-cell analysis reveals inflammatory interactions driving macular degeneration.

Nat Commun. 2023-5-5

[8]
CRISPR editing demonstrates rs10490924 raised oxidative stress in iPSC-derived retinal cells from patients with -related AMD.

Proc Natl Acad Sci U S A. 2023-5-9

[9]
Avacincaptad pegol for geographic atrophy secondary to age-related macular degeneration: 18-month findings from the GATHER1 trial.

Eye (Lond). 2023-12

[10]
Generation of nonhuman primate retinitis pigmentosa model by in situ knockout of RHO in rhesus macaque retina.

Sci Bull (Beijing). 2021-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索