文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用条件生成对抗网络减少稀疏投影 CT 中的图像伪影。

Reducing image artifacts in sparse projection CT using conditional generative adversarial networks.

机构信息

Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.

Department of Radiation Oncology, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.

出版信息

Sci Rep. 2024 Feb 16;14(1):3917. doi: 10.1038/s41598-024-54649-x.


DOI:10.1038/s41598-024-54649-x
PMID:38365934
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10873335/
Abstract

Reducing the amount of projection data in computed tomography (CT), specifically sparse-view CT, can reduce exposure dose; however, image artifacts can occur. We quantitatively evaluated the effects of conditional generative adversarial networks (CGAN) on image quality restoration for sparse-view CT using simulated sparse projection images and compared them with autoencoder (AE) and U-Net models. The AE, U-Net, and CGAN models were trained using pairs of artifacts and original images; 90% of patient cases were used for training and the remaining for evaluation. Restoration of CT values was evaluated using mean error (ME) and mean absolute error (MAE). The image quality was evaluated using structural image similarity (SSIM) and peak signal-to-noise ratio (PSNR). Image quality improved in all sparse projection data; however, slight deformation in tumor and spine regions was observed, with a dispersed projection of over 5°. Some hallucination regions were observed in the CGAN results. Image resolution decreased, and blurring occurred in AE and U-Net; therefore, large deviations in ME and MAE were observed in lung and air regions, and the SSIM and PSNR results were degraded. The CGAN model achieved accurate CT value restoration and improved SSIM and PSNR compared to AE and U-Net models.

摘要

减少计算机断层扫描(CT)中的投影数据量,特别是稀疏视角 CT,可以降低辐射剂量;然而,可能会出现图像伪影。我们使用模拟稀疏投影图像,定量评估条件生成对抗网络(CGAN)对稀疏视角 CT 图像质量恢复的影响,并将其与自动编码器(AE)和 U-Net 模型进行比较。AE、U-Net 和 CGAN 模型使用带有伪影的原始图像对进行训练;90%的患者病例用于训练,其余用于评估。使用平均误差(ME)和平均绝对误差(MAE)评估 CT 值的恢复情况。使用结构相似性(SSIM)和峰值信噪比(PSNR)评估图像质量。在所有稀疏投影数据中,图像质量都有所提高;然而,在肿瘤和脊柱区域观察到轻微的变形,超过 5°的投影分散。在 CGAN 结果中观察到一些幻觉区域。AE 和 U-Net 的图像分辨率降低,出现模糊;因此,在肺和空气区域观察到 ME 和 MAE 的较大偏差,SSIM 和 PSNR 的结果降低。与 AE 和 U-Net 模型相比,CGAN 模型实现了准确的 CT 值恢复,并提高了 SSIM 和 PSNR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/9dbe8d2753bc/41598_2024_54649_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/6cffb1af17b7/41598_2024_54649_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/3f381388857d/41598_2024_54649_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/fe21f2d61562/41598_2024_54649_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/b9ac7860cb20/41598_2024_54649_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/3801195ed636/41598_2024_54649_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/528e180c1ba1/41598_2024_54649_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/587b6f9c440f/41598_2024_54649_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/9dbe8d2753bc/41598_2024_54649_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/6cffb1af17b7/41598_2024_54649_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/3f381388857d/41598_2024_54649_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/fe21f2d61562/41598_2024_54649_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/b9ac7860cb20/41598_2024_54649_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/3801195ed636/41598_2024_54649_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/528e180c1ba1/41598_2024_54649_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/587b6f9c440f/41598_2024_54649_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e64/10873335/9dbe8d2753bc/41598_2024_54649_Fig8_HTML.jpg

相似文献

[1]
Reducing image artifacts in sparse projection CT using conditional generative adversarial networks.

Sci Rep. 2024-2-16

[2]
CT artifact correction for sparse and truncated projection data using generative adversarial networks.

Med Phys. 2021-2

[3]
Deep generative denoising networks enhance quality and accuracy of gated cardiac PET data.

Ann Nucl Med. 2024-10

[4]
Evaluation of motion artefact reduction depending on the artefacts' directions in head MRI using conditional generative adversarial networks.

Sci Rep. 2023-5-26

[5]
Generative adversarial networks improve interior computed tomography angiography reconstruction.

Biomed Phys Eng Express. 2021-10-29

[6]
Inpainting the metal artifact region in MRI images by using generative adversarial networks with gated convolution.

Med Phys. 2022-10

[7]
An attention-based deep convolutional neural network for ultra-sparse-view CT reconstruction.

Comput Biol Med. 2023-7

[8]
Motion artifact removal in coronary CT angiography based on generative adversarial networks.

Eur Radiol. 2023-1

[9]
[Sparse-view Cone-beam Breast CT Reconstruction via cGAN Constrained by Image Edges].

Zhongguo Yi Liao Qi Xie Za Zhi. 2022-3-30

[10]
[Mitigating metal artifacts from cobalt-chromium alloy crowns in cone-beam CT images through deep learning techniques].

Zhonghua Kou Qiang Yi Xue Za Zhi. 2024-1-9

本文引用的文献

[1]
A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction.

Comput Methods Programs Biomed. 2022-11

[2]
Accurate and robust sparse-view angle CT image reconstruction using deep learning and prior image constrained compressed sensing (DL-PICCS).

Med Phys. 2021-10

[3]
Training a deep neural network coping with diversities in abdominal and pelvic images of children and young adults for CBCT-based adaptive proton therapy.

Radiother Oncol. 2021-7

[4]
Incorporation of residual attention modules into two neural networks for low-dose CT denoising.

Med Phys. 2021-6

[5]
Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.

Med Phys. 2020-11

[6]
A Deep Learning Reconstruction Framework for Differential Phase-Contrast Computed Tomography With Incomplete Data.

IEEE Trans Image Process. 2019-10-22

[7]
A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.

Med Phys. 2019-8-6

[8]
SPARE: Sparse-view reconstruction challenge for 4D cone-beam CT from a 1-min scan.

Med Phys. 2019-7-19

[9]
A convolutional neural network for ultra-low-dose CT denoising and emphysema screening.

Med Phys. 2019-7-17

[10]
Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography.

Med Phys. 2019-7-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索