State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, PR China.
State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, PR China.
Comput Methods Programs Biomed. 2022 Nov;226:107168. doi: 10.1016/j.cmpb.2022.107168. Epub 2022 Oct 1.
OBJECTIVE: The dual-domain deep learning-based reconstruction techniques have enjoyed many successful applications in the field of medical image reconstruction. Applying the analytical reconstruction based operator to transfer the data from the projection domain to the image domain, the dual-domain techniques may suffer from the insufficient suppression or removal of streak artifacts in areas with the missing view data, when addressing the sparse-view reconstruction problems. In this work, to overcome this problem, an intelligent sinogram synthesis based back-projection network (iSSBP-Net) was proposed for sparse-view computed tomography (CT) reconstruction. In the iSSBP-Net method, a convolutional neural network (CNN) was involved in the dual-domain method to inpaint the missing view data in the sinogram before CT reconstruction. METHODS: The proposed iSSBP-Net method fused a sinogram synthesis sub-network (SS-Net), a sinogram filter sub-network (SF-Net), a back-projection layer, and a post-CNN into an end-to-end network. Firstly, to inpaint the missing view data, the SS-Net employed a CNN to synthesize the full-view sinogram in the projection domain. Secondly, to improve the visual quality of the sparse-view CT images, the synthesized sinogram was filtered by a CNN. Thirdly, the filtered sinogram was brought into the image domain through the back-projection layer. Finally, to yield images of high visual sensitivity, the post-CNN was applied to restore the desired images from the outputs of the back-projection layer. RESULTS: The numerical experiments demonstrate that the proposed iSSBP-Net is superior to all competing algorithms under different scanning condintions for sparse-view CT reconstruction. Compared to the competing algorithms, the proposed iSSBP-Net method improved the peak signal-to-noise ratio of the reconstructed images about 1.21 dB, 0.26 dB, 0.01 dB, and 0.37 dB under the scanning conditions of 360, 180, 90, and 60 views, respectively. CONCLUSION: The promising reconstruction results indicate that involving the SS-Net in the dual-domain method is could be an effective manner to suppress or remove the streak artifacts in sparse-view CT images. Due to the promising results reconstructed by the iSSBP-Net method, this study is intended to inspire the further development of sparse-view CT reconstruction by involving a SS-Net in the dual-domain method.
目的:基于双域深度学习的重建技术在医学图像重建领域得到了广泛的成功应用。在解决稀疏视图重建问题时,应用基于解析重建算子将数据从投影域转换到图像域,双域技术可能会在缺少视图数据的区域中难以充分抑制或去除条纹伪影。在这项工作中,为了解决这个问题,提出了一种基于智能正弦图合成的反向投影网络(iSSBP-Net)用于稀疏视图计算机断层扫描(CT)重建。在 iSSBP-Net 方法中,卷积神经网络(CNN)被应用于双域方法中,以便在 CT 重建之前对正弦图中的缺失视图数据进行补全。
方法:提出的 iSSBP-Net 方法融合了正弦图合成子网络(SS-Net)、正弦图滤波子网络(SF-Net)、反向投影层和后 CNN 作为一个端到端的网络。首先,为了补全缺失的视图数据,SS-Net 使用 CNN 来合成投影域中的全视正弦图。其次,为了提高稀疏视图 CT 图像的视觉质量,合成的正弦图由 CNN 进行滤波。第三,通过反向投影层将滤波后的正弦图带入图像域。最后,为了获得高视觉灵敏度的图像,应用后 CNN 从反向投影层的输出中恢复所需的图像。
结果:数值实验表明,在所提出的方法在不同的稀疏视图 CT 重建扫描条件下,均优于所有竞争算法。与竞争算法相比,所提出的 iSSBP-Net 方法在 360、180、90 和 60 视图扫描条件下,分别将重建图像的峰值信噪比提高了约 1.21dB、0.26dB、0.01dB 和 0.37dB。
结论:有前途的重建结果表明,在双域方法中引入 SS-Net 可以有效地抑制或去除稀疏视图 CT 图像中的条纹伪影。由于 iSSBP-Net 方法重建的结果很有前景,因此本研究旨在通过在双域方法中引入 SS-Net 来激发稀疏视图 CT 重建的进一步发展。
Comput Methods Programs Biomed. 2022-11
Phys Med. 2022-9
Comput Methods Programs Biomed. 2024-11
Math Biosci Eng. 2022-2-28
Comput Biol Med. 2023-10
BMC Med Imaging. 2024-2-6
Phys Med Biol. 2023-4-26
Sensors (Basel). 2024-10-22
Front Med Technol. 2023-11-8
IEEE Trans Radiat Plasma Med Sci. 2022-2