College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrad032.
Antimicrobial resistance is a major threat for public health. Plasmids play a critical role in the spread of antimicrobial resistance via horizontal gene transfer between bacterial species. However, it remains unclear how plasmids originally recruit and assemble various antibiotic resistance genes (ARGs). Here, we track ARG recruitment and assembly in clinically relevant plasmids by combining a systematic analysis of 2420 complete plasmid genomes and experimental validation. Results showed that ARG transfer across plasmids is prevalent, and 87% ARGs were observed to potentially transfer among various plasmids among 8229 plasmid-borne ARGs. Interestingly, recruitment and assembly of ARGs occur mostly among compatible plasmids within the same bacterial cell, with over 88% of ARG transfers occurring between compatible plasmids. Integron and insertion sequences drive the ongoing ARG acquisition by plasmids, especially in which IS26 facilitates 63.1% of ARG transfer events among plasmids. In vitro experiment validated the important role of IS26 involved in transferring gentamicin resistance gene aacC1 between compatible plasmids. Network analysis showed four beta-lactam genes (blaTEM-1, blaNDM-4, blaKPC-2, and blaSHV-1) shuffling among 1029 plasmids and 45 clinical pathogens, suggesting that clinically alarming ARGs transferred accelerate the propagation of antibiotic resistance in clinical pathogens. ARGs in plasmids are also able to transmit across clinical and environmental boundaries, in terms of the high-sequence similarities of plasmid-borne ARGs between clinical and environmental plasmids. This study demonstrated that inter-plasmid ARG transfer is a universal mechanism for plasmid to recruit various ARGs, thus advancing our understanding of the emergence of multidrug-resistant plasmids.
抗微生物药物耐药性是对公共卫生的主要威胁。质粒通过细菌种间的水平基因转移在抗微生物药物耐药性的传播中起着关键作用。然而,质粒最初如何招募和组装各种抗生素耐药基因(ARGs)仍不清楚。在这里,我们通过结合对 2420 个完整质粒基因组的系统分析和实验验证,追踪临床相关质粒中的 ARG 招募和组装。结果表明,质粒间的 ARG 转移很普遍,在 8229 个质粒携带的 ARGs 中,观察到 87%的 ARGs 有可能在各种质粒间转移。有趣的是,ARG 在同一细菌细胞内的相容质粒之间的招募和组装更为常见,超过 88%的 ARG 转移发生在相容质粒之间。整合子和插入序列驱动质粒不断获得 ARG,尤其是 IS26 促进了质粒间 63.1%的 ARG 转移事件。体外实验验证了 IS26 在介导相容质粒间转移氨基糖苷类耐药基因 aacC1 中的重要作用。网络分析显示,四个β-内酰胺基因(blaTEM-1、blaNDM-4、blaKPC-2 和 blaSHV-1)在 1029 个质粒和 45 种临床病原体之间发生了 shuffling,表明临床警报 ARGs 的转移加速了临床病原体中抗生素耐药性的传播。质粒中的 ARGs 也能够跨越临床和环境边界传播,因为临床和环境质粒之间的质粒携带 ARGs 的序列高度相似。本研究表明,质粒间的 ARG 转移是质粒招募各种 ARG 的普遍机制,从而加深了我们对抗生素耐药质粒产生的理解。
mSystems. 2024-6-18
mBio. 2024-10-16
Nucleic Acids Res. 2025-7-19
Front Med (Lausanne). 2025-5-30
Biology (Basel). 2025-5-15
Antibiotics (Basel). 2025-3-31
Nat Rev Microbiol. 2022-5
BMC Bioinformatics. 2021-7-31
Proc Natl Acad Sci U S A. 2021-2-9