Suppr超能文献

通过环境统计数据协调分类和记忆。

Reconciling categorization and memory via environmental statistics.

机构信息

Computer Science Department, Princeton University, 35 Olden St, Princeton, NJ, 08540, USA.

Psychology Department, Computer Science Department, Princeton University, 35 Olden St, Princeton, NJ, 08540, USA.

出版信息

Psychon Bull Rev. 2024 Oct;31(5):2118-2136. doi: 10.3758/s13423-023-02448-2. Epub 2024 Feb 16.

Abstract

How people represent categories and how those representations change over time is a basic question about human cognition. Previous research has demonstrated that people categorize objects by comparing them to category prototypes in early stages of learning but consider the individual exemplars within each category in later stages. However, these results do not seem consistent with findings in the memory literature showing that it becomes increasingly easier to access representations of general knowledge than representations of specific items over time. Why would one rely more on exemplar-based representations in later stages of categorization when it is more difficult to access these exemplars in memory? To reconcile these incongruities, our study proposed that previous findings on categorization are a result of human participants adapting to a specific experimental environment, in which the probability of encountering an object stays uniform over time. In a more realistic environment, however, one would be less likely to encounter the same object if a long time has passed. Confirming our hypothesis, we demonstrated that under environmental statistics identical to typical categorization experiments the advantage of exemplar-based categorization over prototype-based categorization increases over time, replicating previous research in categorization. In contrast, under realistic environmental statistics simulated by our experiments the advantage of exemplar-based categorization over prototype-based categorization decreases over time. A second set of experiments replicated our results, while additionally demonstrating that human categorization is sensitive to the category structure presented to the participants. These results provide converging evidence that human categorization adapts appropriately to environmental statistics.

摘要

人们如何表示类别,以及这些表示如何随时间变化,这是人类认知的一个基本问题。先前的研究表明,人们在学习的早期阶段通过将物体与类别原型进行比较来对物体进行分类,但在后期阶段会考虑每个类别中的个体示例。然而,这些结果似乎与记忆文献中的发现不一致,记忆文献表明,随着时间的推移,访问一般知识的表示变得越来越容易,而访问特定项目的表示则越来越困难。为什么在分类的后期阶段,人们会更多地依赖基于示例的表示,而在记忆中这些示例更难访问?为了解决这些不一致,我们的研究提出,先前关于分类的发现是人类参与者适应特定实验环境的结果,在这种环境中,随着时间的推移,遇到物体的概率保持均匀。然而,在更现实的环境中,如果时间过去了很久,人们就不太可能遇到相同的物体。证实了我们的假设,我们表明,在与典型分类实验相同的环境统计数据下,基于示例的分类相对于基于原型的分类的优势随着时间的推移而增加,复制了先前的分类研究。相比之下,在我们的实验模拟的现实环境统计数据下,基于示例的分类相对于基于原型的分类的优势随着时间的推移而减少。第二组实验复制了我们的结果,同时还表明,人类分类对向参与者呈现的类别结构敏感。这些结果提供了一致的证据,表明人类分类适当地适应了环境统计数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验