Suppr超能文献

通过重加权重整化群变换减少有限尺寸效应。

Reducing finite-size effects with reweighted renormalization group transformations.

作者信息

Bachtis Dimitrios

机构信息

Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.

出版信息

Phys Rev E. 2024 Jan;109(1-1):014125. doi: 10.1103/PhysRevE.109.014125.

Abstract

We combine histogram reweighting techniques with the two-lattice matching Monte Carlo renormalization group method to conduct computationally efficient calculations of critical exponents on systems with moderately small lattice sizes. The approach, which relies on the construction of renormalization group mappings between two systems of identical lattice size to partially eliminate finite-size effects, and the use of histogram reweighting to obtain computationally efficient results in extended regions of parameter space, is utilized to explicitly determine the renormalized coupling parameters of the two-dimensional ϕ^{4} scalar field theory and to extract multiple critical exponents. We conclude by quantifying the computational benefits of the approach and discuss how reweighting opens up the opportunity to extend Monte Carlo renormalization group methods to systems with complex-valued actions.

摘要

我们将直方图重加权技术与双晶格匹配蒙特卡罗重整化群方法相结合,以便在具有适度小晶格尺寸的系统上高效地计算临界指数。该方法依赖于构建相同晶格尺寸的两个系统之间的重整化群映射,以部分消除有限尺寸效应,并利用直方图重加权在参数空间的扩展区域中获得计算效率高的结果,从而明确确定二维ϕ⁴标量场理论的重整化耦合参数并提取多个临界指数。我们通过量化该方法的计算优势来得出结论,并讨论重加权如何为将蒙特卡罗重整化群方法扩展到具有复值作用量的系统提供机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验