Laboratoire de Physique Théorique, CNRS & Université de Toulouse-Paul Sabatier, France.
Phys Rev E. 2024 Jan;109(1-1):014118. doi: 10.1103/PhysRevE.109.014118.
We study the nature of phase transitions in a self-gravitating classical gas in the presence of a central body. The central body can mimic a black hole at the center of a galaxy or a rocky core (protoplanet) in the context of planetary formation. In the chemotaxis of bacterial populations, sharing formal analogies with self-gravitating systems, the central body can be a supply of "food" that attracts the bacteria (chemoattractant). We consider both microcanonical (fixed energy) and canonical (fixed temperature) descriptions and study the inequivalence of statistical ensembles. At high energies (respectively, high temperatures), the system is in a "gaseous" phase and at low energies (respectively, low temperatures) it is in a condensed phase with a "cusp-halo" structure, where the cusp corresponds to the rapid increase of the density of the gas at the contact with the central body. For a fixed density ρ_{} of the central body, we show the existence of two critical points in the phase diagram, one in each ensemble, depending on the core radius R_{}: for small radii R_{}<R_{}^{MCP}, there exist both microcanonical and canonical phase transitions (that are zeroth and first order); for intermediate radii R_{}^{MCP}<R_{}<R_{}^{CCP}, only canonical phase transitions are present; and for large radii R_{*}>R_{}^{CCP}, there is no phase transition at all. We study how the nature of these phase transitions changes as a function of the dimension of space. We also discuss the analogies and the differences with phase transitions in the self-gravitating Fermi gas [P. H. Chavanis, Phys. Rev. E 65, 056123 (2002)1063-651X10.1103/PhysRevE.65.056123].
我们研究了在存在中心体的情况下,受自身引力作用的经典气体中的相变性质。在星系中心的黑洞或行星形成过程中岩石核心(原行星)的情况下,中心体可以模拟为一个中心体。在细菌种群的趋化作用中,与受自身引力作用的系统具有形式上的相似性,中心体可以是吸引细菌的“食物”(趋化剂)的来源。我们同时考虑了微正则(固定能量)和正则(固定温度)描述,并研究了统计系综的不等价性。在高能量(分别为高温)下,系统处于“气态”相,在低能量(分别为低温)下,它处于具有“尖峰-晕”结构的凝聚相,其中尖峰对应于气体在与中心体接触时密度的快速增加。对于固定的中心体密度 ρ_{},我们在相图中显示了两个临界点的存在,每个系综中都有一个,这取决于核心半径 R_{}:对于小半径 R_{}<R_{}^{MCP},存在微正则和正则相变(分别为零阶和一阶相变);对于中间半径 R_{}^{MCP}<R_{}<R_{}^{CCP},只有正则相变存在;对于大半径 R_{*}>R_{}^{CCP},则根本没有相变。我们研究了这些相变的性质如何随空间维度的变化而变化。我们还讨论了与受自身引力作用的费米气体中的相变的类似之处和差异[P. H. Chavanis,Phys. Rev. E 65,056123(2002)1063-651X10.1103/PhysRevE.65.056123]。