Suppr超能文献

正则系综中双星的随机跃迁。

Random Transitions of a Binary Star in the Canonical Ensemble.

作者信息

Chavanis Pierre-Henri

机构信息

Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.

出版信息

Entropy (Basel). 2024 Sep 4;26(9):757. doi: 10.3390/e26090757.

Abstract

After reviewing the peculiar thermodynamics and statistical mechanics of self-gravitating systems, we consider the case of a "binary star" consisting of two particles of size in gravitational interaction in a box of radius . The caloric curve of this system displays a region of negative specific heat in the microcanonical ensemble, which is replaced by a first-order phase transition in the canonical ensemble. The free energy viewed as a thermodynamic potential exhibits two local minima that correspond to two metastable states separated by an unstable maximum forming a barrier of potential. By introducing a Langevin equation to model the interaction of the particles with the thermal bath, we study the random transitions of the system between a "dilute" state, where the particles are well separated, and a "condensed" state, where the particles are bound together. We show that the evolution of the system is given by a Fokker-Planck equation in energy space and that the lifetime of a metastable state is given by the Kramers formula involving the barrier of free energy. This is a particular case of the theory developed in a previous paper (Chavanis, 2005) for Brownian particles in gravitational interaction associated with the canonical ensemble. In the case of a binary star (N=2), all the quantities can be calculated exactly analytically. We compare these results with those obtained in the mean field limit N→+∞.

摘要

在回顾了自引力系统独特的热力学和统计力学之后,我们考虑一个“双星”的情况,它由两个大小为 的粒子在半径为 的盒子中通过引力相互作用组成。该系统的热容量曲线在微正则系综中显示出一个负比热容区域,在正则系综中则被一阶相变所取代。作为热力学势的自由能呈现出两个局部最小值,它们对应于两个亚稳态,由一个不稳定的最大值分隔开,形成一个势垒。通过引入一个朗之万方程来模拟粒子与热库的相互作用,我们研究了系统在“稀薄”状态(粒子相距很远)和“凝聚”状态(粒子束缚在一起)之间的随机跃迁。我们表明,系统的演化由能量空间中的福克 - 普朗克方程给出,并且亚稳态的寿命由涉及自由能势垒的克莱默斯公式给出。这是先前一篇论文(沙瓦尼斯,2005年)中为与正则系综相关的引力相互作用的布朗粒子所发展理论的一个特殊情况。在双星(N = 2)的情况下,所有量都可以精确地解析计算。我们将这些结果与在平均场极限N→ +∞时获得的结果进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301b/11431723/9155921cf373/entropy-26-00757-g001.jpg

相似文献

1
Random Transitions of a Binary Star in the Canonical Ensemble.
Entropy (Basel). 2024 Sep 4;26(9):757. doi: 10.3390/e26090757.
2
Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032139. doi: 10.1103/PhysRevE.89.032139. Epub 2014 Mar 31.
3
Phase transitions in self-gravitating systems: self-gravitating fermions and hard-sphere models.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):056123. doi: 10.1103/PhysRevE.65.056123. Epub 2002 May 20.
4
Derivation of the Langevin Equation from the Microcanonical Ensemble.
Entropy (Basel). 2024 Mar 22;26(4):277. doi: 10.3390/e26040277.
5
Phase transitions in self-gravitating systems and bacterial populations surrounding a central body.
Phys Rev E. 2024 Jan;109(1-1):014118. doi: 10.1103/PhysRevE.109.014118.
6
Statistical mechanics of the self-gravitating gas with two or more kinds of particles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016112. doi: 10.1103/PhysRevE.66.016112. Epub 2002 Jul 19.
7
First- and second-order clustering transitions for a system with infinite-range attractive interaction.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Aug;66(2 Pt 2):025103. doi: 10.1103/PhysRevE.66.025103. Epub 2002 Aug 26.
8
Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):046133. doi: 10.1103/PhysRevE.66.046133. Epub 2002 Oct 24.
9
Collapses and explosions in self-gravitating systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):036117. doi: 10.1103/PhysRevE.68.036117. Epub 2003 Sep 19.
10
Thermodynamics of the self-gravitating ring model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):056111. doi: 10.1103/PhysRevE.71.056111. Epub 2005 May 19.

本文引用的文献

1
Caloric curves of classical self-gravitating systems in general relativity.
Phys Rev E. 2020 May;101(5-1):052105. doi: 10.1103/PhysRevE.101.052105.
2
Rare Event Algorithm Links Transitions in Turbulent Flows with Activated Nucleations.
Phys Rev Lett. 2019 Feb 22;122(7):074502. doi: 10.1103/PhysRevLett.122.074502.
3
Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032139. doi: 10.1103/PhysRevE.89.032139. Epub 2014 Mar 31.
4
Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031131. doi: 10.1103/PhysRevE.83.031131. Epub 2011 Mar 25.
5
Phase transitions in self-gravitating systems and bacterial populations with a screened attractive potential.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 1):051103. doi: 10.1103/PhysRevE.81.051103. Epub 2010 May 6.
6
Random changes of flow topology in two-dimensional and geophysical turbulence.
Phys Rev Lett. 2009 Mar 6;102(9):094504. doi: 10.1103/PhysRevLett.102.094504. Epub 2009 Mar 4.
7
Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 2):066104. doi: 10.1103/PhysRevE.73.066104. Epub 2006 Jun 1.
8
Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 2):066103. doi: 10.1103/PhysRevE.73.066103. Epub 2006 Jun 1.
9
Self-gravitating Brownian systems and bacterial populations with two or more types of particles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026105. doi: 10.1103/PhysRevE.72.026105. Epub 2005 Aug 3.
10
Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 2):026115. doi: 10.1103/PhysRevE.70.026115. Epub 2004 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验