Zhao Qi, Li Xiyao, Zhang Liang, Li Jianwei, Jia Tipei, Zhao Yang, Wang Luyao, Peng Yongzhen
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
Water Res. 2024 Apr 1;253:121321. doi: 10.1016/j.watres.2024.121321. Epub 2024 Feb 15.
Applying anaerobic ammonium oxidation (anammox) in municipal wastewater treatment plants (MWWTPs) can unlock significant energy and resource savings. However, its practical implementation encounters significant challenges, particularly due to its limited compatibility with carbon and phosphorus removal processes. This study established a pilot-scale plant featuring a modified anaerobic-anoxic-oxic (AO) process and operated continuously for 385 days, treating municipal wastewater of 50 m/d. For the first time, we propose a novel concept of partial denitrifying phosphorus removal coupling with anammox (PDPRA), leveraging denitrifying phosphorus-accumulating organisms (DPAOs) as NO suppliers for anammox. N stable isotope tracing revealed that the PDPRA enabled an anammox reaction rate of 6.14 ± 0.18 μmol-N/(L·h), contributing 57.4 % to total inorganic nitrogen (TIN) removal. Metagenomic sequencing and 16S rRNA amplicon sequencing unveiled the co-existence and co-prosperity of anammox bacteria and DPAOs, with Candidatus Brocadia being highly enriched in the anoxic biofilms at a relative abundance of 2.46 ± 0.52 %. Finally, the PDPRA facilitated the synergistic conversion and removal of carbon, nitrogen, and phosphorus nutrients, achieving remarkable removal efficiencies of chemical oxygen demand (COD, 83.5 ± 5.3 %), NH (99.8 ± 0.7 %), TIN (77.1 ± 3.6 %), and PO (99.3 ± 1.6 %), even under challenging operational conditions such as low temperature of 11.7 °C. The PDPRA offers a promising solution for reconciling the mainstream anammox and the carbon and phosphorus removal, shedding fresh light on the paradigm shift of MWWTPs in the near future.
在城市污水处理厂(MWWTPs)中应用厌氧氨氧化(anammox)可实现显著的能源和资源节约。然而,其实际应用面临重大挑战,特别是由于其与碳和磷去除工艺的兼容性有限。本研究建立了一个采用改良厌氧-缺氧-好氧(AO)工艺的中试规模工厂,并连续运行385天,处理量为50立方米/天的城市污水。我们首次提出了一种新型概念,即部分反硝化除磷与厌氧氨氧化耦合(PDPRA),利用反硝化聚磷菌(DPAOs)作为厌氧氨氧化的NO供应源。氮稳定同位素示踪表明,PDPRA使厌氧氨氧化反应速率达到6.14±0.18微摩尔-N/(升·小时),占总无机氮(TIN)去除量的57.4%。宏基因组测序和16S rRNA扩增子测序揭示了厌氧氨氧化菌和DPAOs的共存与共繁荣,其中“Candidatus Brocadia”在缺氧生物膜中高度富集,相对丰度为2.46±0.52%。最后,PDPRA促进了碳、氮和磷营养物质的协同转化和去除,并实现了显著的去除效率,即使在11.7°C的低温等具有挑战性的运行条件下,化学需氧量(COD,83.5±5.3%)、NH(99.8±0.7%)、TIN(77.1±3.6%)和PO(99.3±1.6%)的去除效率也很高。PDPRA为协调主流厌氧氨氧化与碳和磷去除提供了一个有前景的解决方案,为不久的将来城市污水处理厂的范式转变提供了新的思路。