Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri.
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri.
J Biol Chem. 2024 Mar;300(3):105763. doi: 10.1016/j.jbc.2024.105763. Epub 2024 Feb 16.
The EGF receptor is mutated in a number of cancers. In most cases, the mutations occur in the intracellular tyrosine kinase domain. However, in glioblastomas, many of the mutations are in the extracellular ligand binding domain. To determine what changes in receptor function are induced by such extracellular domain mutations, we analyzed the binding and biological response to the seven different EGF receptor ligands in three common glioblastoma mutants-R84K, A265V, and G574V. Our data indicate that all three mutations significantly increase the binding affinity of all seven ligands. In addition, the mutations increase the potency of all ligands for stimulating receptor autophosphorylation, phospholipase Cγ, Akt, and MAP kinase activity. In all mutants, the rank order of ligand potency seen at the wild-type receptor was retained, suggesting that the receptors still discriminate among the different ligands. However, the low-affinity ligands, EPR and EPG, did show larger than average enhancements of potency for stimulating Akt and MAPK but not receptor autophosphorylation and phospholipase Cγ activation. Relative to the wild-type receptor, these changes lead to an increase in the responsiveness of these mutants to physiological concentrations of ligands and an alteration in the ratio of activation of the different pathways. This may contribute to their oncogenic potential. In the context of recent findings, our data also suggest that so-called "high"-affinity biological responses arise from activation by isolated receptor dimers, whereas "low"-affinity biological responses require clustering of receptors which occurs at higher concentrations of ligand.
表皮生长因子受体在许多癌症中发生突变。在大多数情况下,突变发生在细胞内酪氨酸激酶结构域。然而,在神经胶质瘤中,许多突变发生在细胞外配体结合结构域。为了确定受体功能的这些变化是由细胞外结构域突变引起的,我们分析了三个常见的神经胶质瘤突变体(R84K、A265V 和 G574V)中受体与 7 种不同表皮生长因子受体配体的结合和生物学反应。我们的数据表明,所有三种突变都显著增加了所有 7 种配体的结合亲和力。此外,这些突变增加了所有配体刺激受体自身磷酸化、磷脂酶 Cγ、Akt 和 MAP 激酶活性的效力。在所有突变体中,野生型受体上观察到的配体效力的等级顺序得以保留,表明受体仍然可以区分不同的配体。然而,低亲和力配体 EPR 和 EPG 确实显示出比平均效力更大的增强,以刺激 Akt 和 MAPK,但不刺激受体自身磷酸化和磷脂酶 Cγ 激活。与野生型受体相比,这些变化导致这些突变体对生理浓度配体的反应性增加,以及不同途径激活的比例改变。这可能有助于它们的致癌潜力。根据最近的发现,我们的数据还表明,所谓的“高”亲和力生物学反应是由孤立的受体二聚体激活引起的,而“低”亲和力生物学反应需要受体在更高浓度的配体下聚集。