Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran.
Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran.
Environ Pollut. 2024 Apr 1;346:123584. doi: 10.1016/j.envpol.2024.123584. Epub 2024 Feb 15.
In this research, a novel solar-light-induced KBiOI/Ag-AgVO nanophotocatalyst with an Ag-bridged Z-scheme structure has been designed and synthesized through a sonochemical method to photo-degrade antibiotic hospital contaminants under simulated solar-light irradiation. Synthesized nanophotocatalysts with varying KBiOI to Ag-AgVO weight ratios underwent N Adsorption-Desorption, XRD, TEM, UV-Vis DRS, FESEM and PL analyses. The Ag-bridged Z-scheme-structured KBiOI/Ag-AgVO (1:1) nanophotocatalyst, demonstrated broad light absorption within the solar-light spectrum and showcased effective photocatalytic efficacy in degrading tetracycline antibiotic (88.3% and 83.5% removal for 25 and 50 mg/L, respectively, after 120 min). This performance outperformed other composited photocatalysts, as well as pure Ag-AgVO and KBiOI photocatalysts. The enhanced degradation efficiency of the KBiOI/Ag-AgVO (1:1) composite can be ascribed to the synergistic interaction of various elements. These include the surface plasmon resonance impact of silver nanoparticles, their pronounced sensitivity to solar irradiation, and the Z-scheme heterojunction configuration. Collectively, these factors work together to minimize the recombination rate of photoinduced electron-hole pairs, thereby amplifying the efficacy of photodegradation. Furthermore, the KBiOI/Ag-AgVO (1:1) composite photocatalyst displayed sustained pollutants elimination performance even after undergoing four consecutive cycles.
在这项研究中,通过超声化学法设计并合成了一种具有 Ag 桥接 Z 型结构的新型太阳光诱导 KBiOI/Ag-AgVO 纳米光催化剂,用于模拟太阳光照射下光降解抗生素医院污染物。具有不同 KBiOI 与 Ag-AgVO 重量比的合成纳米光催化剂进行了 N 吸附-解吸、XRD、TEM、UV-Vis DRS、FESEM 和 PL 分析。Ag 桥接 Z 型结构的 KBiOI/Ag-AgVO(1:1)纳米光催化剂在太阳光光谱范围内具有宽光吸收,并在降解四环素抗生素方面表现出有效的光催化效果(25 和 50mg/L 时分别为 88.3%和 83.5%的去除率,120min 后)。这种性能优于其他复合光催化剂以及纯 Ag-AgVO 和 KBiOI 光催化剂。KBiOI/Ag-AgVO(1:1)复合材料降解效率的提高可归因于各种元素的协同相互作用。这些包括银纳米粒子的表面等离子体共振影响、它们对太阳辐射的显著敏感性以及 Z 型异质结结构。这些因素共同作用,最大限度地减少光生电子-空穴对的复合率,从而增强光降解效果。此外,KBiOI/Ag-AgVO(1:1)复合光催化剂即使经过连续四个循环也表现出持续的污染物消除性能。