Mathematisches Institut, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
Theor Popul Biol. 2024 Apr;156:103-116. doi: 10.1016/j.tpb.2024.02.005. Epub 2024 Feb 15.
A multi-type neutral Cannings population model with migration and fixed subpopulation sizes is analyzed. Under appropriate conditions, as all subpopulation sizes tend to infinity, the ancestral process, properly time-scaled, converges to a multi-type coalescent sharing the exchangeability and consistency property. The proof gains from coalescent theory for single-type Cannings models and from decompositions of transition probabilities into parts concerning reproduction and migration respectively. The following section deals with a different but closely related multi-type Cannings model with mutation and fixed total population size but stochastically varying subpopulation sizes. The latter model is analyzed forward and backward in time with an emphasis on its behavior as the total population size tends to infinity. Forward in time, multi-type limiting branching processes arise for large population size. Its backward structure and related open problems are briefly discussed.
分析了具有迁移和固定亚群大小的多型中性 Cannings 种群模型。在适当的条件下,随着所有亚群大小趋于无穷大,适当定标后的祖先过程收敛于具有交换性和一致性的多型合并。证明来源于单型 Cannings 模型的合并理论和分别涉及繁殖和迁移的转移概率的分解。下一节处理具有突变和固定总种群大小但亚群大小随机变化的另一个但密切相关的多型 Cannings 模型。该模型从时间的正向和反向进行了分析,重点是其在总种群大小趋于无穷大时的行为。从时间的正向来看,对于大的种群大小,会出现多型极限分支过程。简要讨论了其向后的结构和相关的开放性问题。